login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319580
Number of binary rooted trees with n leaves of n colors and all non-leaf nodes having out-degree 2.
2
1, 3, 18, 215, 3600, 80136, 2213036, 73068543, 2806959015, 123002168300, 6055381161852, 330885794632536, 19872950226273053, 1301261803764756855, 92259974680854975000, 7041606755629152575055, 575638367425376279620662, 50180725346542105445190603
OFFSET
1,2
COMMENTS
Not all of the n colors need to be used.
LINKS
V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
MAPLE
A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2))
end:
a:= n-> A(n$2):
seq(a(n), n=1..20); # Alois P. Heinz, Sep 23 2018
MATHEMATICA
A[n_, k_] := A[n, k] = If[n < 2, k n, If[OddQ[n], 0, Function[t, t(1-t) / 2][A[n/2, k]]] + Sum[A[i, k] A[n - i, k], {i, 1, n/2}]];
a[n_] := A[n, n];
Array[a, 20] (* Jean-François Alcover, Apr 10 2020, after Alois P. Heinz *)
PROG
(PARI) a(n)={my(v=vector(n)); v[1]=n; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v[n]} \\ Andrew Howroyd, Sep 23 2018
CROSSREFS
Main diagonal of A319539.
Sequence in context: A356614 A183241 A163883 * A132727 A111841 A279233
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 23 2018
STATUS
approved