login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319582
Square array T(n, k) = 2 ^ (Sum_{p prime} [v_p(n) >= v_p(k) > 0]) read by antidiagonals up, where [] is the Iverson bracket and v_p is the p-adic valuation, n >= 1, k >= 1.
1
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1
OFFSET
1,5
COMMENTS
T(n, k) is the number of integers located on the sphere with center n and radius log(k), when the metric is given by log(A089913).
T(., k) is multiplicative and k-periodic.
T(n, .) is multiplicative and n^2-periodic.
FORMULA
T(n, k) = card({x; d(n, x) = log(k)}), if d denotes log(A089913(., .)), which is a metric.
T(n, k) = 2 ^ (Sum_{p prime} [v_p(n) >= v_p(k) > 0]).
a(n) = 2 ^ A319581(n).
T(n, n) = 2 ^ A001221(n) = A034444(n).
EXAMPLE
T(60, 50) = T(2^2 * 3^1 * 5^1, 2^1 * 5^2)
= T(2^2, 2^1) * T(3^1, 3^0) * T(5^1, 5^2)
= 2^[2 >= 1 > 0] * 2^[1 >= 0 > 0] * 2^[1 >= 2 > 0]
= 2^1 * 2^0 * 2^0 = 2 * 1 * 1 = 2.
Array begins:
k = 1 1 1
n 1 2 3 4 5 6 7 8 9 0 1 2
= ------------------------
1 | 1 1 1 1 1 1 1 1 1 1 1 1
2 | 1 2 1 1 1 2 1 1 1 2 1 1
3 | 1 1 2 1 1 2 1 1 1 1 1 2
4 | 1 2 1 2 1 2 1 1 1 2 1 2
5 | 1 1 1 1 2 1 1 1 1 2 1 1
6 | 1 2 2 1 1 4 1 1 1 2 1 2
7 | 1 1 1 1 1 1 2 1 1 1 1 1
8 | 1 2 1 2 1 2 1 2 1 2 1 2
9 | 1 1 2 1 1 2 1 1 2 1 1 2
10 | 1 2 1 1 2 2 1 1 1 4 1 1
11 | 1 1 1 1 1 1 1 1 1 1 2 1
12 | 1 2 2 2 1 4 1 1 1 2 1 4
MATHEMATICA
F[n_] := If[n == 1, {}, FactorInteger[n]]
V[p_] := If[KeyExistsQ[#, p], #[p], 0] &
PreT[n_, k_] :=
Module[{fn = F[n], fk = F[k], p, an = <||>, ak = <||>, w},
p = Union[First /@ fn, First /@ fk];
(an[#[[1]]] = #[[2]]) & /@ fn;
(ak[#[[1]]] = #[[2]]) & /@ fk;
w = ({V[#][an], V[#][ak]}) & /@ p;
Select[w, (#[[1]] >= #[[2]] > 0) &]
]
T[n_, k_] := 2^Length[PreT[n, k]]
A004736[n_] := Binomial[Floor[3/2 + Sqrt[2*n]], 2] - n + 1
A002260[n_] := n - Binomial[Floor[1/2 + Sqrt[2*n]], 2]
a[n_] := T[A004736[n], A002260[n]]
Table[a[n], {n, 1, 90}]
PROG
(PARI) maxp(n) = if (n==1, 1, vecmax(factor(n)[, 1]));
T(n, k) = {pmax = max(maxp(n), maxp(k)); x = 0; forprime(p=2, pmax, if ((valuation(n, p) >= valuation(k, p)) && (valuation(k, p) > 0), x ++); ); 2^x; } \\ Michel Marcus, Oct 28 2018
CROSSREFS
Cf. A319581 (an additive variant).
Sequence in context: A060209 A037830 A174353 * A187447 A146292 A139039
KEYWORD
nonn,tabl
AUTHOR
Luc Rousseau, Sep 24 2018
STATUS
approved