login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319581
Square array T(n, k) = Sum_{p prime} [v_p(n) >= v_p(k) > 0] read by antidiagonals up, where [] is the Iverson bracket and v_p is the p-adic valuation, n >= 1, k >= 1.
1
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0
OFFSET
1,61
COMMENTS
T(., k) is additive and k-periodic.
T(n, .) is additive and n^2-periodic.
FORMULA
T(n, k) = Sum_{p prime} [v_p(n) >= v_p(k) > 0].
T(n, n) = omega(n) = A001221(n) = the number of distinct primes dividing n.
a(n) = log_2(A319582(n)).
EXAMPLE
T(60, 50) = T(2^2 * 3^1 * 5^1, 2^1 * 5^2)
= T(2^2, 2^1) + T(3^1, 3^0) + T(5^1, 5^2)
= [2 >= 1 > 0] + [1 >= 0 > 0] + [1 >= 2 > 0]
= 1 + 0 + 0
= 1.
Array begins (zeros replaced by dots):
k = 1 1 1
n 1 2 3 4 5 6 7 8 9 0 1 2
= ------------------------
1 | . . . . . . . . . . . .
2 | . 1 . . . 1 . . . 1 . .
3 | . . 1 . . 1 . . . . . 1
4 | . 1 . 1 . 1 . . . 1 . 1
5 | . . . . 1 . . . . 1 . .
6 | . 1 1 . . 2 . . . 1 . 1
7 | . . . . . . 1 . . . . .
8 | . 1 . 1 . 1 . 1 . 1 . 1
9 | . . 1 . . 1 . . 1 . . 1
10 | . 1 . . 1 1 . . . 2 . .
11 | . . . . . . . . . . 1 .
12 | . 1 1 1 . 2 . . . 1 . 2
MATHEMATICA
F[n_] := If[n == 1, {}, FactorInteger[n]]
V[p_] := If[KeyExistsQ[#, p], #[p], 0] &
PreT[n_, k_] :=
Module[{fn = F[n], fk = F[k], p, an = <||>, ak = <||>, w},
p = Union[First /@ fn, First /@ fk];
(an[#[[1]]] = #[[2]]) & /@ fn;
(ak[#[[1]]] = #[[2]]) & /@ fk;
w = ({V[#][an], V[#][ak]}) & /@ p;
Select[w, (#[[1]] >= #[[2]] > 0) &]
]
T[n_, k_] := Length[PreT[n, k]]
A004736[n_] := Binomial[Floor[3/2 + Sqrt[2*n]], 2] - n + 1
A002260[n_] := n - Binomial[Floor[1/2 + Sqrt[2*n]], 2]
a[n_] := T[A004736[n], A002260[n]]
Table[a[n], {n, 1, 90}]
PROG
(PARI) maxp(n) = if (n==1, 1, vecmax(factor(n)[, 1]));
T(n, k) = {pmax = max(maxp(n), maxp(k)); x = 0; forprime(p=2, pmax, if ((valuation(n, p) >= valuation(k, p)) && (valuation(k, p) > 0), x ++); ); x; } \\ Michel Marcus, Oct 28 2018
CROSSREFS
Cf. A319582 (a multiplicative variant).
Cf. A001221.
Sequence in context: A225783 A135468 A003196 * A331302 A062977 A357879
KEYWORD
nonn,tabl
AUTHOR
Luc Rousseau, Sep 23 2018
STATUS
approved