login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319581 Square array T(n, k) = Sum_{p prime} [v_p(n) >= v_p(k) > 0] read by antidiagonals up, where [] is the Iverson bracket and v_p is the p-adic valuation, n >= 1, k >= 1. 1
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,61

COMMENTS

T(., k) is additive and k-periodic.

T(n, .) is additive and n^2-periodic.

LINKS

Table of n, a(n) for n=1..90.

FORMULA

T(n, k) = Sum_{p prime} [v_p(n) >= v_p(k) > 0].

T(n, n) = omega(n) = A001221(n) = the number of distinct primes dividing n.

a(n) = log_2(A319582(n)).

EXAMPLE

T(60, 50) = T(2^2 * 3^1 * 5^1, 2^1 * 5^2)

  = T(2^2, 2^1) + T(3^1, 3^0) + T(5^1, 5^2)

  = [2 >= 1 > 0] + [1 >= 0 > 0] + [1 >= 2 > 0]

  = 1 + 0 + 0

  = 1.

Array begins (zeros replaced by dots):

     k =                 1 1 1

   n   1 2 3 4 5 6 7 8 9 0 1 2

   =  ------------------------

   1 | . . . . . . . . . . . .

   2 | . 1 . . . 1 . . . 1 . .

   3 | . . 1 . . 1 . . . . . 1

   4 | . 1 . 1 . 1 . . . 1 . 1

   5 | . . . . 1 . . . . 1 . .

   6 | . 1 1 . . 2 . . . 1 . 1

   7 | . . . . . . 1 . . . . .

   8 | . 1 . 1 . 1 . 1 . 1 . 1

   9 | . . 1 . . 1 . . 1 . . 1

  10 | . 1 . . 1 1 . . . 2 . .

  11 | . . . . . . . . . . 1 .

  12 | . 1 1 1 . 2 . . . 1 . 2

MATHEMATICA

F[n_] := If[n == 1, {}, FactorInteger[n]]

V[p_] := If[KeyExistsQ[#, p], #[p], 0] &

PreT[n_, k_] :=

Module[{fn = F[n], fk = F[k], p, an = <||>, ak = <||>, w},

  p = Union[First /@ fn, First /@ fk];

  (an[#[[1]]] = #[[2]]) & /@ fn;

  (ak[#[[1]]] = #[[2]]) & /@ fk;

  w = ({V[#][an], V[#][ak]}) & /@ p;

  Select[w, (#[[1]] >= #[[2]] > 0) &]

  ]

T[n_, k_] := Length[PreT[n, k]]

A004736[n_] := Binomial[Floor[3/2 + Sqrt[2*n]], 2] - n + 1

A002260[n_] := n - Binomial[Floor[1/2 + Sqrt[2*n]], 2]

a[n_] := T[A004736[n], A002260[n]]

Table[a[n], {n, 1, 90}]

PROG

(PARI) maxp(n) = if (n==1, 1, vecmax(factor(n)[, 1]));

T(n, k) = {pmax = max(maxp(n), maxp(k)); x = 0; forprime(p=2, pmax, if ((valuation(n, p) >= valuation(k, p)) && (valuation(k, p) > 0), x ++); ); x; } \\ Michel Marcus, Oct 28 2018

CROSSREFS

Cf. A319582 (a multiplicative variant).

Cf. A001221.

Sequence in context: A225783 A135468 A003196 * A062977 A072325 A294929

Adjacent sequences:  A319578 A319579 A319580 * A319582 A319583 A319584

KEYWORD

nonn,tabl

AUTHOR

Luc Rousseau, Sep 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 21:00 EST 2019. Contains 329937 sequences. (Running on oeis4.)