login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319578
a(n) = (1/3)*(n+2)^2*(3*n+3)!/(n+2)!^3.
0
1, 10, 140, 2310, 42042, 816816, 16628040, 350574510, 7595781050, 168212023980, 3792416540640, 86787993910800, 2011383287449200, 47123837020238400, 1114478745528638160, 26575401262863040830, 638330716607984804250, 15431925043610580004500, 375239440534109892741000
OFFSET
0,2
COMMENTS
Number of Schröder paths of length 2n+1 having n peaks.
FORMULA
a(n) = (n+2)*(3*n+2)!/((n+2)!^2*n!).
a(n) = A060693(2n+1,n).
MAPLE
a := n -> (n+2)*(3*n+2)!/((n+2)!^2*n!): seq(a(n), n = 0..18);
MATHEMATICA
Table[(n+2) (3*n+2)! / ((n+2)!^2 n!), {n, 0, 30}] (* Vincenzo Librandi, Oct 01 2018 *)
PROG
(PARI) a(n) = (1/3)*(n+2)^2*(3*n+3)!/(n+2)!^3; \\ Michel Marcus, Oct 01 2018
(Magma) [(1/3)*(n+2)^2*Factorial(3*n+3)/Factorial(n+2)^3: n in [0..20]]; // Vincenzo Librandi, Oct 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 30 2018
STATUS
approved