

A319578


a(n) = (1/3)*(n+2)^2*(3*n+3)!/(n+2)!^3.


0



1, 10, 140, 2310, 42042, 816816, 16628040, 350574510, 7595781050, 168212023980, 3792416540640, 86787993910800, 2011383287449200, 47123837020238400, 1114478745528638160, 26575401262863040830, 638330716607984804250, 15431925043610580004500, 375239440534109892741000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Number of Schröder paths of length 2n+1 having n peaks.


LINKS

Table of n, a(n) for n=0..18.


FORMULA

a(n) = (n+2)*(3*n+2)!/((n+2)!^2*n!).
a(n) = A060693(2n+1,n).


MAPLE

a := n > (n+2)*(3*n+2)!/((n+2)!^2*n!): seq(a(n), n = 0..18);


MATHEMATICA

Table[(n+2) (3*n+2)! / ((n+2)!^2 n!), {n, 0, 30}] (* Vincenzo Librandi, Oct 01 2018 *)


PROG

(PARI) a(n) = (1/3)*(n+2)^2*(3*n+3)!/(n+2)!^3; \\ Michel Marcus, Oct 01 2018
(MAGMA) [(1/3)*(n+2)^2*Factorial(3*n+3)/Factorial(n+2)^3: n in [0..20]]; // Vincenzo Librandi, Oct 01 2018


CROSSREFS

Cf. A007004, A060693, A215287.
Sequence in context: A132505 A254336 A215289 * A051618 A295034 A221576
Adjacent sequences: A319575 A319576 A319577 * A319579 A319580 A319581


KEYWORD

nonn


AUTHOR

Peter Luschny, Sep 30 2018


STATUS

approved



