login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319576
a(n) = (4/15)*n*(n - 1)*(n^3 - 9*n^2 + 26*n - 9).
4
0, 0, 8, 24, 48, 112, 312, 840, 2016, 4320, 8424, 15224, 25872, 41808, 64792, 96936, 140736, 199104, 275400, 373464, 497648, 652848, 844536, 1078792, 1362336, 1702560, 2107560, 2586168, 3147984, 3803408, 4563672, 5440872, 6448000, 7598976, 8908680, 10392984
OFFSET
0,3
FORMULA
a(n) = [x^5] JacobiTheta3(x)^n.
a(n) = A319574(n,5).
From Colin Barker, Oct 02 2018: (Start)
G.f.: 8*x^2*(1 - 3*x + 3*x^2 + 3*x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
MAPLE
a := n -> (4/15)*n*(n - 1)*(n^3 - 9*n^2 + 26*n - 9):
seq(a(n), n=0..41);
MATHEMATICA
A319576[n_] := 4/15*n*(n-1)*(n^3-9*n^2+26*n-9); Array[A319576, 50, 0] (* or *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 8, 24, 48, 112}, 50] (* Paolo Xausa, Feb 20 2024 *)
PROG
(PARI) concat([0, 0], Vec(8*x^2*(1 - 3*x + 3*x^2 + 3*x^3) / (1 - x)^6 + O(x^40))) \\ Colin Barker, Oct 02 2018
CROSSREFS
Cf. A000012 (m=0), A005843 (m=1), A046092 (m=2), A130809 (m=3), A319575 (m=4), this sequence (m=5), A319577 (m=6).
Column n=5 of A122141.
Cf. A319574.
Sequence in context: A333714 A146980 A342062 * A028612 A333173 A358036
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Oct 01 2018
STATUS
approved