login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A342062
a(n) is the number of divisors of prime(n)^8 - 1.
3
8, 24, 48, 84, 96, 192, 192, 288, 224, 192, 576, 576, 672, 2304, 1024, 768, 768, 192, 768, 336, 672, 1024, 3072, 1344, 864, 576, 448, 1152, 1536, 512, 2112, 768, 1792, 768, 1152, 1344, 2304, 960, 896, 1536, 1728, 1152, 2560, 1280, 1728, 504, 1536, 2304, 1536
OFFSET
1,1
COMMENTS
a(n) >= 384 for n > 20.
LINKS
FORMULA
a(n) = A000005(A000040(n)^8 - 1).
EXAMPLE
n prime(n) factorization of prime(n)^8 - 1 a(n)
-- -------- --------------------------------------- ----
1 2 3 * 5 * 17 8
2 3 2^5 * 5 * 41 24
3 5 2^5 * 3 * 13 * 313 48
4 7 2^6 * 3 * 5^2 * 1201 84
5 11 2^5 * 3 * 5 * 61 * 7321 96
6 13 2^5 * 3 * 5 * 7 * 17 * 14281 192
7 17 2^7 * 3^2 * 5 * 29 * 41761 192
8 19 2^5 * 3^2 * 5 * 17 * 181 * 3833 288
9 23 2^6 * 3 * 5 * 11 * 53 * 139921 224
10 29 2^5 * 3 * 5 * 7 * 421 * 353641 192
11 31 2^8 * 3 * 5 * 13 * 37 * 409 * 1129 576
12 37 2^5 * 3^2 * 5 * 19 * 89 * 137 * 10529 576
13 41 2^6 * 3 * 5 * 7 * 29^2 * 137 * 10313 672
...
20 71 2^6 * 3^2 * 5 * 7 * 2521 * 12705841 336
MAPLE
f:= n -> numtheory:-tau(ithprime(n)^8-1):
map(f, [$1..100]); # Robert Israel, Feb 28 2021
MATHEMATICA
a[n_] := DivisorSigma[0, Prime[n]^8 - 1]; Array[a, 50] (* Amiram Eldar, Feb 27 2021 *)
PROG
(PARI) a(n) = numdiv(prime(n)^8-1); \\ Michel Marcus, Feb 27 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 27 2021
STATUS
approved