login
A342064
Primes p such that p^8 - 1 has 384 divisors.
2
821, 997, 2819, 6619, 17827, 20947, 24917, 42709, 43411, 46141, 49261, 51691, 80077, 108803, 158981, 159539, 161341, 171659, 202667, 228611, 268573, 304477, 315803, 350971, 420781, 447683, 463459, 816709, 848227, 887989, 953773, 991811, 1056829, 1131379
OFFSET
1,1
COMMENTS
Conjecture: sequence is infinite.
For every term p, p^8 - 1 is of the form 2^5 * 3 * 5 * q * r * s * t, where q, r, s, and t are distinct primes > 5 (see Example section).
EXAMPLE
p =
n a(n) factorization of p^8 - 1
- ----- -----------------------------------------------------
1 821 2^5 * 3 * 5 * 41 * 137 * 337021 * 227165634841
2 997 2^5 * 3 * 5 * 83 * 499 * 99401 * 494026946041
3 2819 2^5 * 3 * 5 * 47 * 1409 * 3973381 * 31575505195561
4 6619 2^5 * 3 * 5 * 331 * 1103 * 21905581 * 959708914083961
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 27 2021
STATUS
approved