login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342064 Primes p such that p^8 - 1 has 384 divisors. 2
821, 997, 2819, 6619, 17827, 20947, 24917, 42709, 43411, 46141, 49261, 51691, 80077, 108803, 158981, 159539, 161341, 171659, 202667, 228611, 268573, 304477, 315803, 350971, 420781, 447683, 463459, 816709, 848227, 887989, 953773, 991811, 1056829, 1131379 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Conjecture: sequence is infinite.
For every term p, p^8 - 1 is of the form 2^5 * 3 * 5 * q * r * s * t, where q, r, s, and t are distinct primes > 5 (see Example section).
LINKS
EXAMPLE
p =
n a(n) factorization of p^8 - 1
- ----- -----------------------------------------------------
1 821 2^5 * 3 * 5 * 41 * 137 * 337021 * 227165634841
2 997 2^5 * 3 * 5 * 83 * 499 * 99401 * 494026946041
3 2819 2^5 * 3 * 5 * 47 * 1409 * 3973381 * 31575505195561
4 6619 2^5 * 3 * 5 * 331 * 1103 * 21905581 * 959708914083961
CROSSREFS
Sequence in context: A230784 A022254 A095964 * A020368 A002140 A095965
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 27 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 04:46 EDT 2024. Contains 374267 sequences. (Running on oeis4.)