login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342066
Primes p such that p^10 - 1 has 256 divisors.
0
1187, 4723, 33037, 66973, 72797, 87973, 100523, 197123, 219683, 229693, 276293, 278827, 440653, 448997, 482837, 562963, 601333, 621443, 670493, 742723, 846877, 892357, 1033427, 1149307, 1166027, 1245067, 1256747, 1614413, 1679773, 1865693, 1950323, 1970467
OFFSET
1,1
COMMENTS
Conjecture: sequence is infinite.
The only primes p such that p^10 - 1 has fewer than A309906(10)=256 divisors are 2, 3, 5, 7, 11, 13, and 43.
p^10 - 1 = (p-1)*(p+1)*(p^4 - p^3 + p^2 - p + 1)*(p^4 + p^3 + p^2 + p + 1). For every p > 11, one of these five factors is divisible by 11; one of p-1 and p+1 is divisible by 3; and p-1 and p+1 are consecutive even numbers, so one of them is divisible by 4 and their product is divisible by 8; thus, p^10 - 1 is divisible by 2^3 * 3 * 11.
For every term p with the exception of a(1)=1187, p^10 - 1 is of the form 2^3 * 3 * 11 * q * r * s * t, where q, r, s, and t are distinct primes > 11.
EXAMPLE
For p = a(1) = 1187, p^10 - 1 = 2^3 * 3^3 * 11 * 593 * 1983522604541 * 1986867499321;
for p = a(2) = 4723, p^10 - 1 = 2^3 * 3 * 11 * 787 * 1181 * 45245048697451 * 497484826300381.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 27 2021
STATUS
approved