login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342061
Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.
2
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
OFFSET
2,8
COMMENTS
The number of faces is n + 2 - k.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..1276 (first 50 rows)
Timothy R. Walsh, Efficient enumeration of sensed planar maps, Discrete Math. 293 (2005), no. 1-3, 263--289. MR2136069 (2006b:05062).
FORMULA
T(n,k) = T(n, n+2-k).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 8, 3, 1;
1, 4, 16, 16, 4, 1;
1, 5, 38, 63, 38, 5, 1;
1, 7, 72, 218, 218, 72, 7, 1;
1, 8, 134, 622, 1075, 622, 134, 8, 1;
...
PROG
(PARI) \\ See section 4 of Walsh reference.
T(n)={
my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!))));
my(C(i, j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2, (j+1)/2]);
my(D(i, j)=((j+1)/2)*B[i/2, (j+1)/2]);
my(E(i, j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i, j]);
my(F(i, j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i, j]) + if(j-1, binomial(i+2, 2)*B[i+1, j-1]));
vector(n, n, vector(n, i, my(j=n+1-i); B[i, j]
+ (i+j)*if(i%2, if(j%2, C(i, j), D(j, i)), if(j%2, D(i, j)))
+ sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) )))
)/(2*n+2));
}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
CROSSREFS
Column k=3 is A001399(n-3).
Row sums are A006402.
Cf. A082680 (rooted), A239893, A342059.
Sequence in context: A266378 A092113 A331485 * A045995 A360625 A157654
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 30 2021
STATUS
approved