login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082680
Triangle read by rows: T(n,k) is the number of 2-stack sortable n-permutations with k runs.
8
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 49, 20, 1, 1, 35, 168, 168, 35, 1, 1, 56, 462, 900, 462, 56, 1, 1, 84, 1092, 3630, 3630, 1092, 84, 1, 1, 120, 2310, 12012, 20449, 12012, 2310, 120, 1, 1, 165, 4488, 34320, 91091, 91091, 34320, 4488, 165, 1, 1, 220, 8151, 87516, 340340, 529984, 340340, 87516, 8151, 220, 1
OFFSET
1,5
COMMENTS
Number of beta(1,0)-trees on n+1 nodes with k leaves.
Row sums are given by A000139. - F. Chapoton, Nov 17 2015
T(n,k) is the number of rooted non-separable planar maps with n+1 edges, k+1 faces and n+2-k vertices. - Andrew Howroyd, Mar 29 2021
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
M. Bona, 2-stack sortable permutations with a given number of runs, arXiv:math/9705220 [math.CO], 1997.
Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
Enrica Duchi, Veronica Guerrini, Simone Rinaldi, and Gilles Schaeffer, Fighting Fish: enumerative properties, arXiv:1611.04625 [math.CO], 2016.
FORMULA
T(n, k) = (n+k-1)!*(2*n-k)!/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!).
EXAMPLE
Triangle starts:
1;
1, 1;
1, 4, 1;
1, 10, 10, 1;
1, 20, 49, 20, 1;
1, 35, 168, 168, 35, 1;
1, 56, 462, 900, 462, 56, 1;
1, 84, 1092, 3630, 3630, 1092, 84, 1;
...
MATHEMATICA
Table[(n+k-1)!(2n-k)!/k!/(n+1-k)!/(2k-1)!/(2n-2k+1)!, {n, 10}, {k, n}]//Flatten (* Harvey P. Dale, Jun 10 2020 *)
PROG
(PARI) T(n, k) = (n+k-1)!*(2*n-k)!/k!/(n+1-k)!/(2*k-1)!/(2*n-2*k+1)! \\ Andrew Howroyd, Mar 29 2021
CROSSREFS
Cf. A000292 (2nd column), A051947 (3rd column).
Cf. A000139 (row sums).
Similar to A008292 and A001263.
Sequence in context: A319029 A175124 A089447 * A056939 A202924 A142595
KEYWORD
nonn,tabl,easy
AUTHOR
Ralf Stephan, May 19 2003
EXTENSIONS
Terms a(52) and beyond from Andrew Howroyd, Mar 29 2021
STATUS
approved