login
A331485
Array read by antidiagonals: A(n,k) is the number of nonequivalent nonnegative integer matrices with k columns and any number of nonzero rows with column sums n up to permutation of rows and columns.
10
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 3, 1, 1, 5, 23, 21, 5, 1, 1, 7, 79, 162, 66, 7, 1, 1, 11, 274, 1636, 1338, 192, 11, 1, 1, 15, 1003, 19977, 43686, 10585, 565, 15, 1, 1, 22, 3763, 298416, 2142277, 1178221, 82694, 1579, 22, 1, 1, 30, 14723, 5300296, 149056260, 232984145, 30370346, 612700, 4348, 30, 1
OFFSET
0,8
COMMENTS
A(n,k) is the number of non-isomorphic multiset partitions (multisets of multisets) with k parts each of size n.
LINKS
FORMULA
A306017(n) = Sum_{d|n} A(n/d, d).
EXAMPLE
Array begins:
============================================================
n\k | 0 1 2 3 4 5 6
----+-------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 1 2 3 5 7 11 ...
2 | 1 2 7 23 79 274 1003 ...
3 | 1 3 21 162 1636 19977 298416 ...
4 | 1 5 66 1338 43686 2142277 149056260 ...
5 | 1 7 192 10585 1178221 232984145 74676589469 ...
6 | 1 11 565 82694 30370346 23412296767 33463656939910 ...
...
The A(2,2) = 7 matrices are:
[1 0] [2 0] [1 1] [2 1] [2 0] [1 1] [2 2]
[1 0] [0 1] [1 0] [0 1] [0 2] [1 1]
[0 1] [0 1] [0 1]
[0 1]
PROG
(PARI) \\ See A318951 for RowSumMats
T(n, k)={RowSumMats(k, n*k, n)}
{ for(n=0, 7, for(k=0, 6, print1(T(n, k), ", ")); print) }
CROSSREFS
Rows n=0..4 are A000012, A000041, A007717, A058194, A331721.
Columns k=0..3 are A000012, A000041, A331722, A331723.
Sequence in context: A266378 A092113 A379432 * A342061 A045995 A360625
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 18 2020
STATUS
approved