OFFSET
0,8
COMMENTS
The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
A(n,k) is the number of n-uniform k-block multisets of multisets.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325
FORMULA
EXAMPLE
Array begins:
====================================================================
n\k | 0 1 2 3 4 5
----+---------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 2 4 8 16 ...
2 | 1 2 14 150 2210 41642 ...
3 | 1 4 128 10848 1796408 491544512 ...
4 | 1 8 1288 933448 1852183128 7805700498776 ...
5 | 1 16 13472 85862144 2098614254048 140102945876710912 ...
6 | 1 32 143840 8206774496 2516804131997152 ...
...
The A(2,2) = 14 matrices are:
[1 0] [1 0] [1 0] [2 0] [1 1] [1 0] [1 0]
[1 0] [0 1] [0 1] [0 1] [1 0] [1 1] [1 0]
[0 1] [1 0] [0 1] [0 1] [0 1] [0 1] [0 2]
[0 1] [0 1] [1 0]
.
[1 0] [1 0] [2 1] [2 0] [1 1] [1 0] [2 2]
[0 2] [0 1] [0 1] [0 2] [1 1] [1 2]
[1 0] [1 1]
PROG
(PARI) T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j+n-1, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 13 2020
STATUS
approved