OFFSET
1,6
COMMENTS
Also the number of lone-child-avoiding rooted trees with n vertices and more than two branches.
LINKS
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014)
Eric Weisstein's World of Mathematics, Series-reduced tree.
EXAMPLE
The a(4) = 1 through a(9) = 10 trees:
(ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo)
(oo(oo)) (oo(ooo)) (oo(oooo)) (oo(ooooo))
(ooo(oo)) (ooo(ooo)) (ooo(oooo))
(oooo(oo)) (oooo(ooo))
(o(oo)(oo)) (ooooo(oo))
(oo(o(oo))) (o(oo)(ooo))
(oo(o(ooo)))
(oo(oo)(oo))
(oo(oo(oo)))
(ooo(o(oo)))
MATHEMATICA
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]], {ptn, IntegerPartitions[n-1]}];
Table[Length[Select[urt[n], Length[#]>2&&FreeQ[#, {_}]&]], {n, 10}]
CROSSREFS
The not necessarily lone-child-avoiding version is A331233.
The Matula-Goebel numbers of these trees are listed by A331490.
A000081 counts unlabeled rooted trees.
A001678 counts lone-child-avoiding rooted trees.
A001679 counts topologically series-reduced rooted trees.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A331489 lists Matula-Goebel numbers of series-reduced rooted trees.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 20 2020
EXTENSIONS
a(37)-a(38) from Jinyuan Wang, Jun 26 2020
Terminology corrected (lone-child-avoiding, not series-reduced) by Gus Wiseman, May 10 2021
STATUS
approved