login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331491
a(n) is the permanent of a 2n X 2n antisymmetric Toeplitz matrix M(2n) whose first row consists of a single zero followed by successive positive integers repeated (A004526).
2
1, -1, 8, -965, 301864, -276973609, 529706205072, -1976989515848629, 12817424808315680000, -136266429300554940901097, 2240244443768853657066332152, -54675928167021488863788002983045, 1910142516402733768189592370043464696, -92787876901046051283841308281722409846473
OFFSET
0,3
COMMENTS
Conjecture: for n > 0, det(M(2n)) = n^2 = A000290(n) with det(M(0)) = 1.
LINKS
Wikipedia, Toeplitz Matrix
EXAMPLE
For n = 2 the matrix M(4) is
0 1 1 2
-1 0 1 1
-1 -1 0 1
-2 -1 -1 0
with permanent a(2) = 8.
MATHEMATICA
nmax:=13; k[i_]:=Floor[i/2]; a[n_]:=If[n==0, 1, Permanent[ToeplitzMatrix[-Array[k, n], Array[k, n]]]]; Table[a[2n], {n, 0, nmax}]
PROG
(PARI) tm(n) = {my(m = matrix(n, n, i, j, if (i==1, floor(j/2), if (j==1, -floor(i/2))))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
a(n) = matpermanent(tm(2*n));
CROSSREFS
KEYWORD
sign
AUTHOR
Stefano Spezia, Jan 18 2020
STATUS
approved