login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A120421
Number of distinct ribbon Schur functions with n boxes; also the number of distinct multisets of partitions determined by all coarsenings of compositions of n.
0
1, 2, 3, 6, 10, 20, 36, 72, 135, 272, 528, 1052, 2080, 4160, 8244, 16508, 32896, 65770, 131328, 262632, 524744, 1049600, 2098176, 4196200, 8390620, 16781312, 33558291, 67116944, 134225920, 268451240, 536887296, 1073774376, 2147515424
OFFSET
1,2
LINKS
Louis Billera, Hugh Thomas, and Stephanie van Willigenburg, Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions, arXiv:math/0405434 [math.CO], 2004-2005.
Louis Billera, Hugh Thomas, and Stephanie van Willigenburg, Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions, Adv. Math. 204: 204-240 (2006).
Martin Rubey, The number of ribbon Schur functions, arXiv:1008.2501 [math.CO], 2010.
FORMULA
Dirichlet G.f.: 2 C(s) S(s)/(C(s)+S(s)) where C(s)=Sum_{n>0} 2^{n-1} n^{-s} and S(s)=Sum_{n>0} 2^{floor(n/2)} n^{-s}. - Martin Rubey, Aug 17 2010
EXAMPLE
a(4)=6 as the multisets are {4}, {4,31}, {4,22}, {4,31,22,211}, {4,31,31,211} and {4,31,31,22,211,211,211,1111}
CROSSREFS
Cf. A005418.
Sequence in context: A331488 A052525 A006606 * A005418 A329699 A002215
KEYWORD
nonn
AUTHOR
Stephanie van Willigenburg (steph(AT)math.ubc.ca), Jul 09 2006
EXTENSIONS
Corrected and extended by Martin Rubey, Aug 17 2010
STATUS
approved