OFFSET
1,2
LINKS
Louis Billera, Hugh Thomas, and Stephanie van Willigenburg, Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions, arXiv:math/0405434 [math.CO], 2004-2005.
Louis Billera, Hugh Thomas, and Stephanie van Willigenburg, Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions, Adv. Math. 204: 204-240 (2006).
Martin Rubey, The number of ribbon Schur functions, arXiv:1008.2501 [math.CO], 2010.
FORMULA
Dirichlet G.f.: 2 C(s) S(s)/(C(s)+S(s)) where C(s)=Sum_{n>0} 2^{n-1} n^{-s} and S(s)=Sum_{n>0} 2^{floor(n/2)} n^{-s}. - Martin Rubey, Aug 17 2010
EXAMPLE
a(4)=6 as the multisets are {4}, {4,31}, {4,22}, {4,31,22,211}, {4,31,31,211} and {4,31,31,22,211,211,211,1111}
CROSSREFS
KEYWORD
nonn
AUTHOR
Stephanie van Willigenburg (steph(AT)math.ubc.ca), Jul 09 2006
EXTENSIONS
Corrected and extended by Martin Rubey, Aug 17 2010
STATUS
approved