|
|
A120421
|
|
Number of distinct ribbon Schur functions with n boxes; also the number of distinct multisets of partitions determined by all coarsenings of compositions of n.
|
|
0
|
|
|
1, 2, 3, 6, 10, 20, 36, 72, 135, 272, 528, 1052, 2080, 4160, 8244, 16508, 32896, 65770, 131328, 262632, 524744, 1049600, 2098176, 4196200, 8390620, 16781312, 33558291, 67116944, 134225920, 268451240, 536887296, 1073774376, 2147515424
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
Louis Billera, Hugh Thomas and Stephanie van Willigenburg "Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions" Adv. Math. 204: 204-240 (2006).
|
|
LINKS
|
|
|
FORMULA
|
Dirichlet G.f.: 2 C(s) S(s)/(C(s)+S(s)) where C(s)=Sum_{n>0} 2^{n-1} n^{-s} and S(s)=Sum_{n>0} 2^{floor(n/2)} n^{-s}. - Martin Rubey, Aug 17 2010]
|
|
EXAMPLE
|
a(4)=6 as the multisets are {4}, {4,31}, {4,22}, {4,31,22,211}, {4,31,31,211} and {4,31,31,22,211,211,211,1111}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Stephanie van Willigenburg (steph(AT)math.ubc.ca), Jul 09 2006
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|