OFFSET
0,5
COMMENTS
Also known as homeomorphically irreducible rooted trees, or rooted trees without nodes of degree 2.
A rooted tree is lone-child-avoiding if no vertex has exactly one child, and topologically series-reduced if no vertex has degree 2. This sequence counts unlabeled topologically series-reduced rooted trees with n vertices. Lone-child-avoiding rooted trees with n - 1 vertices are counted by A001678. - Gus Wiseman, Jan 21 2020
REFERENCES
D. G. Cantor, personal communication.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Eq. (3.3.9).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. MR0891613 (89a:05009). See p. 155. - N. J. A. Sloane, Apr 18 2014
F. Harary, G. Prins, The number of homeomorphically irreducible trees and other species, Acta Math. 101 (1959) 141-162, W(x,y) equation (9a).
N. J. A. Sloane, Illustration of initial terms
Eric Weisstein's World of Mathematics, Series-Reduced Tree.
FORMULA
G.f. = 1 + ((1+x)*f(x) - (f(x)^2+f(x^2))/2)/x where f(x) is g.f. for A001678 (homeomorphically irreducible planted trees by nodes).
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711... and c = 0.4213018528699249210965028... . - Vaclav Kotesovec, Jun 26 2014
For n > 1, this sequence counts lone-child-avoiding rooted trees with n nodes and more than two branches, plus lone-child-avoiding rooted trees with n - 1 nodes. So for n > 1, a(n) = A331488(n) + A001678(n). - Gus Wiseman, Jan 21 2020
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 20*x^9 + ...
From Gus Wiseman, Jan 21 2020: (Start)
The a(1) = 1 through a(8) = 12 unlabeled topologically series-reduced rooted trees with n nodes (empty n = 3 column shown as dot) are:
o (o) . (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
((oo)) ((ooo)) ((oooo)) ((ooooo)) ((oooooo))
(oo(oo)) (oo(ooo)) (oo(oooo))
((o(oo))) (ooo(oo)) (ooo(ooo))
((o(ooo))) (oooo(oo))
((oo(oo))) ((o(oooo)))
((oo(ooo)))
((ooo(oo)))
(o(oo)(oo))
(oo(o(oo)))
(((oo)(oo)))
((o(o(oo))))
(End)
MAPLE
with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C, Z), S = Set(B, 1 <= card), C = Union(Z, S)}:
G001678 := (convert(gfseries(sys, unlabeled, x)[S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
G001679 := G0temp / x + G0temp - (G0temp^2+eval(G0temp, x=x^2))/(2*x): A001679 := 0, seq(coeff(G001679, x^i), i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
# adapted for Maple 16 or higher version by Vaclav Kotesovec, Jun 26 2014
MATHEMATICA
terms = 37; (* F = G001678 *) F[_] = 0; Do[F[x_] = (x^2/(1 + x))*Exp[Sum[ F[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms + 1}];
G[x_] = 1 + ((1 + x)/x)*F[x] - (F[x]^2 + F[x^2])/(2*x) + O[x]^terms;
CoefficientList[G[x], x] (* Jean-François Alcover, Jan 12 2018 *)
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]], {ptn, IntegerPartitions[n-1]}];
Table[Length[Select[urt[n], Length[#]!=2&&FreeQ[Z@@#, {_}]&]], {n, 15}] (* Gus Wiseman, Jan 21 2020 *)
PROG
(PARI) {a(n) = local(A); if( n<3, n>0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (1 + x)*A - x*(A^2 + subst(A, x, x^2)) / 2, n))};
CROSSREFS
Apart from initial term, same as A059123.
Cf. A000055 (trees by nodes), A000014 (homeomorphically irreducible trees by nodes), A000669 (homeomorphically irreducible planted trees by leaves), A000081 (rooted trees by nodes).
Cf. A246403.
Matula-Goebel numbers of these trees are given by A331489.
Lone-child-avoiding rooted trees are counted by A001678(n + 1).
KEYWORD
nonn
AUTHOR
EXTENSIONS
Additional comments from Michael Somos, Oct 10 2003
STATUS
approved