login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001679
Number of series-reduced rooted trees with n nodes.
(Formerly M0327 N0123)
16
1, 1, 1, 0, 2, 2, 4, 6, 12, 20, 39, 71, 137, 261, 511, 995, 1974, 3915, 7841, 15749, 31835, 64540, 131453, 268498, 550324, 1130899, 2330381, 4813031, 9963288, 20665781, 42947715, 89410092, 186447559, 389397778, 814447067, 1705775653, 3577169927
OFFSET
0,5
COMMENTS
Also known as homeomorphically irreducible rooted trees, or rooted trees without nodes of degree 2.
A rooted tree is lone-child-avoiding if no vertex has exactly one child, and topologically series-reduced if no vertex has degree 2. This sequence counts unlabeled topologically series-reduced rooted trees with n vertices. Lone-child-avoiding rooted trees with n - 1 vertices are counted by A001678. - Gus Wiseman, Jan 21 2020
REFERENCES
D. G. Cantor, personal communication.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Eq. (3.3.9).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. MR0891613 (89a:05009). See p. 155. - N. J. A. Sloane, Apr 18 2014
F. Harary, G. Prins, The number of homeomorphically irreducible trees and other species, Acta Math. 101 (1959) 141-162, W(x,y) equation (9a).
Eric Weisstein's World of Mathematics, Series-Reduced Tree.
FORMULA
G.f. = 1 + ((1+x)*f(x) - (f(x)^2+f(x^2))/2)/x where f(x) is g.f. for A001678 (homeomorphically irreducible planted trees by nodes).
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711... and c = 0.4213018528699249210965028... . - Vaclav Kotesovec, Jun 26 2014
For n > 1, this sequence counts lone-child-avoiding rooted trees with n nodes and more than two branches, plus lone-child-avoiding rooted trees with n - 1 nodes. So for n > 1, a(n) = A331488(n) + A001678(n). - Gus Wiseman, Jan 21 2020
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 20*x^9 + ...
From Gus Wiseman, Jan 21 2020: (Start)
The a(1) = 1 through a(8) = 12 unlabeled topologically series-reduced rooted trees with n nodes (empty n = 3 column shown as dot) are:
o (o) . (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
((oo)) ((ooo)) ((oooo)) ((ooooo)) ((oooooo))
(oo(oo)) (oo(ooo)) (oo(oooo))
((o(oo))) (ooo(oo)) (ooo(ooo))
((o(ooo))) (oooo(oo))
((oo(oo))) ((o(oooo)))
((oo(ooo)))
((ooo(oo)))
(o(oo)(oo))
(oo(o(oo)))
(((oo)(oo)))
((o(o(oo))))
(End)
MAPLE
with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C, Z), S = Set(B, 1 <= card), C = Union(Z, S)}:
G001678 := (convert(gfseries(sys, unlabeled, x)[S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
G001679 := G0temp / x + G0temp - (G0temp^2+eval(G0temp, x=x^2))/(2*x): A001679 := 0, seq(coeff(G001679, x^i), i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
# adapted for Maple 16 or higher version by Vaclav Kotesovec, Jun 26 2014
MATHEMATICA
terms = 37; (* F = G001678 *) F[_] = 0; Do[F[x_] = (x^2/(1 + x))*Exp[Sum[ F[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms + 1}];
G[x_] = 1 + ((1 + x)/x)*F[x] - (F[x]^2 + F[x^2])/(2*x) + O[x]^terms;
CoefficientList[G[x], x] (* Jean-François Alcover, Jan 12 2018 *)
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]], {ptn, IntegerPartitions[n-1]}];
Table[Length[Select[urt[n], Length[#]!=2&&FreeQ[Z@@#, {_}]&]], {n, 15}] (* Gus Wiseman, Jan 21 2020 *)
PROG
(PARI) {a(n) = local(A); if( n<3, n>0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (1 + x)*A - x*(A^2 + subst(A, x, x^2)) / 2, n))};
CROSSREFS
Apart from initial term, same as A059123.
Cf. A000055 (trees by nodes), A000014 (homeomorphically irreducible trees by nodes), A000669 (homeomorphically irreducible planted trees by leaves), A000081 (rooted trees by nodes).
Cf. A246403.
The labeled version is A060313, with unrooted case A005512.
Matula-Goebel numbers of these trees are given by A331489.
Lone-child-avoiding rooted trees are counted by A001678(n + 1).
Sequence in context: A226452 A037163 A059123 * A030435 A063886 A003000
KEYWORD
nonn
EXTENSIONS
Additional comments from Michael Somos, Oct 10 2003
STATUS
approved