login
A001677
Number of series-parallel networks with n edges.
(Formerly M0797 N0302)
2
1, 2, 3, 6, 12, 26, 59, 146, 368, 976, 2667, 7482, 21440, 62622, 185637, 557680, 1694256, 5198142, 16086486, 50165218, 157510504, 497607008, 1580800091, 5047337994, 16190223624, 52153429218, 168657986843, 547389492416
OFFSET
2,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
B. D. H. Tellegen, Geometrical configurations and duality of electrical networks, Philips Technical Review, 5 (1940), 324-330.
LINKS
R. M. Foster, The number of series-parallel networks, Proc. Intern. Congr. Math., Vol. 1, 1950, p. 646.
FORMULA
a(n) = s(n) - (1/2)*Sum_{i=1..n-1} s(i)*s(n-i) - (1/2)*s(n/2), where s() = A000084 and the last term is omitted if n is odd.
EXAMPLE
a(5) = 24 - (1/2)*(1*10+2*4+4*2+10*1) = 6.
MATHEMATICA
m = 29; ClearAll[a, b, s]; a[1] = 1; a[2] = 2; a[3] = 4; b[1] = 1; b[n_ /; n >= 2] = a[n]/2; ex = Product[ 1/(1-x^k)^b[k], {k, 1, m}] - 1 - Sum[ a[k]*x^k, {k, 1, m}]; coes = CoefficientList[ Series[ ex, {x, 0, m}], x]; sol = Solve[ Thread[ coes == 0]][[1]]; Do[ s[k] = a[k] /. sol, {k, 1, m}]; a[2] = 1; a[3] = 2; a[n_] := s[n] - (1/2)*Sum[ s[i]*s[n-i], {i, 1, n-1}] - If[ OddQ[n], 0, s[n/2]/2]; Table[ a[n], {n, 2, m}] (* Jean-François Alcover, Feb 24 2012 *)
CROSSREFS
Sequence in context: A375099 A086625 A152172 * A373182 A339150 A024422
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from David W. Wilson, Sep 20 2000
STATUS
approved