login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086625
Antidiagonal sums of square table A086623.
8
1, 2, 3, 6, 12, 26, 59, 138, 332, 814, 2028, 5118, 13054, 33598, 87143, 227542, 597640, 1577866, 4185108, 11146570, 29798682, 79932298, 215072896, 580327122, 1569942098, 4257254850, 11569980794, 31508150890, 85968266198, 234975421554
OFFSET
0,2
COMMENTS
a(n) is the number of Dyck (n+1)-paths (A000108) containing no DUDD and no UUPDD where P is a nonempty Dyck subpath. Example: a(2)=3 counts UUDDUD, UDUUDD, UDUDUD but omits UUUDDD because it contains an offending UUPDD and omits UUDUDD because it contains a DUDD. - David Callan, Oct 26 2006
LINKS
FORMULA
G.f.: A(x) = (1-x^2)/(1-x)^2 + x^2*A(x)^2.
a(n) ~ sqrt(11*r-3) / (4*sqrt(2*Pi)*(1-r)*n^(3/2)*r^(n+5/2)), where r = 0.3478103847799310287... is the root of the equation 4*r^3+4*r^2+r = 1. - Vaclav Kotesovec, Mar 22 2014
D-finite with recurrence (n+2)*a(n) +2*(-n-1)*a(n-1) +(-3*n+4)*a(n-2) +4*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, Sep 29 2020
MATHEMATICA
CoefficientList[Series[(-1+x+Sqrt[1+x*(-2-3*x+4*x^3)])/(2*(-1+x)*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 22 2014 *)
CROSSREFS
Cf. A086623 (table), A086624 (diagonal).
Sequence in context: A166296 A151527 A375099 * A152172 A001677 A373182
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 24 2003
STATUS
approved