login
A086625
Antidiagonal sums of square table A086623.
8
1, 2, 3, 6, 12, 26, 59, 138, 332, 814, 2028, 5118, 13054, 33598, 87143, 227542, 597640, 1577866, 4185108, 11146570, 29798682, 79932298, 215072896, 580327122, 1569942098, 4257254850, 11569980794, 31508150890, 85968266198, 234975421554
OFFSET
0,2
COMMENTS
a(n) is the number of Dyck (n+1)-paths (A000108) containing no DUDD and no UUPDD where P is a nonempty Dyck subpath. Example: a(2)=3 counts UUDDUD, UDUUDD, UDUDUD but omits UUUDDD because it contains an offending UUPDD and omits UUDUDD because it contains a DUDD. - David Callan, Oct 26 2006
LINKS
FORMULA
G.f.: A(x) = (1-x^2)/(1-x)^2 + x^2*A(x)^2.
a(n) ~ sqrt(11*r-3) / (4*sqrt(2*Pi)*(1-r)*n^(3/2)*r^(n+5/2)), where r = 0.3478103847799310287... is the root of the equation 4*r^3+4*r^2+r = 1. - Vaclav Kotesovec, Mar 22 2014
D-finite with recurrence (n+2)*a(n) +2*(-n-1)*a(n-1) +(-3*n+4)*a(n-2) +4*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, Sep 29 2020
MATHEMATICA
CoefficientList[Series[(-1+x+Sqrt[1+x*(-2-3*x+4*x^3)])/(2*(-1+x)*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 22 2014 *)
CROSSREFS
Cf. A086623 (table), A086624 (diagonal).
Sequence in context: A166296 A151527 A375099 * A152172 A001677 A373182
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 24 2003
STATUS
approved