Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 29 2020 09:40:35
%S 1,2,3,6,12,26,59,138,332,814,2028,5118,13054,33598,87143,227542,
%T 597640,1577866,4185108,11146570,29798682,79932298,215072896,
%U 580327122,1569942098,4257254850,11569980794,31508150890,85968266198,234975421554
%N Antidiagonal sums of square table A086623.
%C a(n) is the number of Dyck (n+1)-paths (A000108) containing no DUDD and no UUPDD where P is a nonempty Dyck subpath. Example: a(2)=3 counts UUDDUD, UDUUDD, UDUDUD but omits UUUDDD because it contains an offending UUPDD and omits UUDUDD because it contains a DUDD. - _David Callan_, Oct 26 2006
%H Vincenzo Librandi, <a href="/A086625/b086625.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: A(x) = (1-x^2)/(1-x)^2 + x^2*A(x)^2.
%F a(n) ~ sqrt(11*r-3) / (4*sqrt(2*Pi)*(1-r)*n^(3/2)*r^(n+5/2)), where r = 0.3478103847799310287... is the root of the equation 4*r^3+4*r^2+r = 1. - _Vaclav Kotesovec_, Mar 22 2014
%F D-finite with recurrence (n+2)*a(n) +2*(-n-1)*a(n-1) +(-3*n+4)*a(n-2) +4*a(n-3) +4*(n-3)*a(n-4)=0. - _R. J. Mathar_, Sep 29 2020
%t CoefficientList[Series[(-1+x+Sqrt[1+x*(-2-3*x+4*x^3)])/(2*(-1+x)*x^2),{x,0,20}],x] (* _Vaclav Kotesovec_, Mar 22 2014 *)
%Y Cf. A086623 (table), A086624 (diagonal).
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jul 24 2003