login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A005512
Number of series-reduced labeled trees with n nodes.
(Formerly M3261)
9
1, 1, 0, 4, 5, 96, 427, 6448, 56961, 892720, 11905091, 211153944, 3692964145, 75701219608, 1613086090995, 38084386700896, 949168254452993, 25524123909350112, 725717102391257347, 21955114496683796680
OFFSET
1,4
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 188 (3.1.94)
F. Harary and E. M. Palmer, Graphical Enumeration. New York: Academic Press, 1973. (gives g.f. for unlabeled series-reduced trees)
R. C. Read, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014)
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Quebec 16 (1992), no 1, 53-80.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
A. Meir and J. W. Moon, On nodes of degree two in random trees, Mathematika 15 1968 188-192.
R. C. Read, Some Unusual Enumeration Problems, Annals of the New York Academy of Sciences, Vol. 175, 1970, 314-326.
Eric Weisstein's World of Mathematics, Series-reduced Tree
FORMULA
a(n) = A060313(n)/n.
a(n) = Sum_{k=0..n-2} (-1)^k*(n-k)^(n-k-2)*binomial(n, k)*(n-2)!/(n-k-2)!, n>=2.
E.g.f.: (1+x)*B(x)*(1-B(x)/2), where B(x) is e.g.f. for A060356. - Vladeta Jovovic, Dec 17 2004
a(n) ~ (1-exp(-1))^(n+1/2)*n^(n-2). - Vaclav Kotesovec, Aug 07 2013
EXAMPLE
a(6) = 96 because there are two unlabeled series-reduced trees on six vertices, the star and the tree with two vertices of degree three and four leaves; the first of these can be labeled in 6 ways and the second in 90, for a total of 96. - Isabel C. Lugo (izzycat(AT)gmail.com), Aug 19 2004
MAPLE
A005512 := proc(n)
if n = 1 then
1;
else
add( (-1)^(n-r)*binomial(n, r)*r^(r-2)/(r-2)!, r=2..n) ;
%*(n-2)! ;
end if;
end proc: # R. J. Mathar, Sep 09 2014
MATHEMATICA
a[1] = a[2] = 1; a[3] = 0; a[n_] := n!*(n-2)!*Sum[ (-1)^k*(n-k)^(n-k-3) / (k!*(n-k-2)!^2*(n-k-1)), {k, 0, n-2}]; Table[a[n], {n, 1, 20}](* Jean-François Alcover, Feb 16 2012, after given formula *)
u[1, 1] = 1; u[2, 1] = 0; u[2, 2] = 1; u[3, k_] := 0;
u[n_, k_] /; k <= 0 := 0;
u[n_, k_] /; k >= 1 :=
u[n, k] = (n (n - k) u[n - 1, k - 1] + n (n - 1) (n - 3) u[n - 2, k - 1])/k;
Table[Sum[u[n, m], {m, 1, n}], {n, 50}] (* David Callan, Jun 25 2014, fast generation, after R. C. Read link *)
PROG
(PARI) a(n) = if(n<=1, n==1, sum(k=0, n-2, (-1)^k*(n-k)^(n-k-2)*binomial(n, k)*(n-2)!/(n-k-2)!)) \\ Andrew Howroyd, Dec 18 2017
(Magma) [1] cat [Factorial(n-2)*(&+[(-1)^k*Binomial(n, k)*(n-k)^(n-k-2)/Factorial(n-k-2): k in [0..n-2]]): n in [2..20]]
(Sage) [1]+[factorial(n-2)*sum((-1)^k*binomial(n, k)*(n-k)^(n-k-2)/factorial( n-k-2) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Mar 07 2020
CROSSREFS
Cf. A000014 (unlabeled analog), A060313.
Sequence in context: A376048 A078985 A041173 * A331584 A052320 A079197
KEYWORD
nonn,nice
EXTENSIONS
Formula from Christian G. Bower, Jan 16 2004
STATUS
approved