OFFSET
0,3
COMMENTS
A multiset partition of weight n is a finite multiset of finite nonempty multisets whose sizes sum to n.
Number of distinct nonnegative integer matrices with all row sums equal and total sum n up to row and column permutations. - Andrew Howroyd, Sep 05 2018
From Gus Wiseman, Oct 11 2018: (Start)
Also the number of non-isomorphic multiset partitions of weight n in which each vertex appears the same number of times. For n = 4, non-isomorphic representatives of these 17 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,3,4}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1},{2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{3,4}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{2},{3,4}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{3},{4}}
(End)
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
FORMULA
For p prime, a(p) = 2*A000041(p).
a(n) = Sum_{d|n} A331485(n/d, d). - Andrew Howroyd, Feb 09 2020
EXAMPLE
Non-isomorphic representatives of the a(4) = 17 multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1,3},{2,3}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
MATHEMATICA
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
a[n_] := a[n] = If[n==0, 1, If[PrimeQ[n], 2 PartitionsP[n], Sum[ RowSumMats[ n/d, n, d], {d, Divisors[n]}]]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 07 2019, after Andrew Howroyd *)
PROG
(PARI) \\ See A318951 for RowSumMats.
a(n)={sumdiv(n, d, RowSumMats(n/d, n, d))} \\ Andrew Howroyd, Sep 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 17 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Sep 05 2018
STATUS
approved