login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306020
a(n) is the number of set-systems using nonempty subsets of {1,...,n} in which all sets have the same size.
10
1, 2, 5, 16, 95, 2110, 1114237, 68723671292, 1180735735906024030715, 170141183460507917357914971986913657850, 7237005577335553223087828975127304179197147198604070555943173844710572689401
OFFSET
0,2
COMMENTS
A058673(n) <= a(n). - Lorenzo Sauras Altuzarra, Aug 10 2023
FORMULA
a(n) = 1 - n + Sum_{d = 1..n} 2^binomial(n, d).
EXAMPLE
a(3) = 16 set-systems in which all sets have the same size:
{}
{{1}}
{{2}}
{{3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
MAPLE
a := n -> 1-n+add(2^binomial(n, d), d = 1 .. n):
seq(a(n), n = 0 .. 10); # Lorenzo Sauras Altuzarra, Aug 11 2023
MATHEMATICA
Table[1+Sum[2^Binomial[n, d]-1, {d, n}], {n, 10}]
PROG
(PARI) a(n) = 1 - n + sum(d = 1, n, 2^binomial(n, d)); \\ Michel Marcus, Aug 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 17 2018
STATUS
approved