|
|
A306021
|
|
Number of set-systems spanning {1,...,n} in which all sets have the same size.
|
|
43
|
|
|
1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the number of labeled uniform hypergraphs spanning n vertices. - Andrew Howroyd, Jan 16 2024
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
|
|
EXAMPLE
|
The a(3) = 6 set-systems in which all sets have the same size:
{{1,2,3}}
{{1}, {2}, {3}}
{{1,2}, {1,3}}
{{1,2}, {2,3}}
{{1,3}, {2,3}}
{{1,2}, {1,3}, {2,3}}
|
|
MATHEMATICA
|
Table[Sum[(-1)^(n-k)*Binomial[n, k]*(1+Sum[2^Binomial[k, d]-1, {d, k}]), {k, 0, n}], {n, 12}]
|
|
PROG
|
(PARI) a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n, d)*2^binomial(d, k)))) \\ Andrew Howroyd, Jan 16 2024
|
|
CROSSREFS
|
Cf. A000005, A001315, A007716, A038041, A049311, A283877, A298422, A306017, A306018, A306019, A306020.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|