login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306021 Number of set-systems spanning {1,...,n} in which all sets have the same size. 43
1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) is the number of labeled uniform hypergraphs spanning n vertices. - Andrew Howroyd, Jan 16 2024
LINKS
FORMULA
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
Inverse binomial transform of A306020. - Andrew Howroyd, Jan 16 2024
EXAMPLE
The a(3) = 6 set-systems in which all sets have the same size:
{{1,2,3}}
{{1}, {2}, {3}}
{{1,2}, {1,3}}
{{1,2}, {2,3}}
{{1,3}, {2,3}}
{{1,2}, {1,3}, {2,3}}
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[n, k]*(1+Sum[2^Binomial[k, d]-1, {d, k}]), {k, 0, n}], {n, 12}]
PROG
(PARI) a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n, d)*2^binomial(d, k)))) \\ Andrew Howroyd, Jan 16 2024
CROSSREFS
Row sums of A299471.
The unlabeled version is A301481.
The connected version is A299353.
Sequence in context: A085078 A152543 A279454 * A122593 A267348 A264610
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 17 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 14 13:32 EDT 2024. Contains 375921 sequences. (Running on oeis4.)