|
|
A007004
|
|
a(n) = (3*n)! / ((n+1)*(n!)^3).
(Formerly M3125)
|
|
7
|
|
|
1, 3, 30, 420, 6930, 126126, 2450448, 49884120, 1051723530, 22787343150, 504636071940, 11377249621920, 260363981732400, 6034149862347600, 141371511060715200, 3343436236585914480, 79726203788589122490, 1914992149823954412750, 46295775130831740013500
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Number of walks with steps (0,1)/North, (1,0)/East and (-1,-1)/Southwest from (0,0) to (0,0) of length 3n, and staying above the line y=x (i.e., any point (x,y) along the walk satisfies y>=x ). - Shanzhen Gao, Nov 09 2010
Number of walks in 3-dimensions using steps (1,0,0), (0,1,0), and (0,0,1) from (0,0,0) to (n,n,n) such that after each step we have y<=x. - Eric Werley, Jun 24 2011
Number of possible necklaces consisting of n white beads, n-1 red beads and n-1 black beads, where two necklaces are considered equivalent if they differ by a cyclic permutation. - Thotsaporn Thanatipanonda, Feb 20 2011
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (3*(3*n-1)*(3*n-2)*a(n-1))/(n*(n+1)) for n>0, a(0)=1. - Alois P. Heinz, Aug 13 2013
|
|
EXAMPLE
|
n=1, three walks: NE(SW), (SW)NE, N(SW)E. - Shanzhen Gao, Nov 09 2010
|
|
MAPLE
|
seq(binomial(2*n, n)*binomial(3*n, n)/(n+1), n=0..20); # Zerinvary Lajos, May 27 2006
|
|
MATHEMATICA
|
CoefficientList[Series[Hypergeometric2F1[1/3, 2/3, 2, 27 x], {x, 0, 20}], x] (* Harvey P. Dale, Apr 07 2013 *)
|
|
PROG
|
(Magma) [Factorial(3*n) / ((n+1)*Factorial(n)^3): n in [0..30]]; // Vincenzo Librandi, May 26 2011
(Maxima) makelist(multinomial_coeff(n, n, n)/(n+1), n, 0, 24); /* Emanuele Munarini, Oct 25 2016 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|