login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354287
Expansion of e.g.f. 1/(1 - x)^(3/(1 + 3 * log(1-x))).
3
1, 3, 30, 438, 8334, 194580, 5368662, 170591022, 6126386724, 245127214548, 10804866210648, 519910458588576, 27105081897342816, 1521393008601586536, 91445577404393807928, 5858664681621903625368, 398467273528657973600208, 28668189882264862351707504
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A354263(k) * binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} 3^k * A000262(k) * |Stirling1(n,k)|.
a(n) ~ exp((-5 + 1/(exp(1/3) - 1) + 4*sqrt(3*n/(exp(1/3) - 1)) - 4*n)/6) * n^(n - 1/4) / (sqrt(2) * 3^(1/4) * (exp(1/3) - 1)^(n + 1/4)). - Vaclav Kotesovec, May 23 2022
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(3/(1+3*log(1-x)))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 3^k*k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 23 2022
STATUS
approved