login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354288
Expansion of e.g.f. (1 + x)^(2/(1 - 2 * log(1+x))).
3
1, 2, 10, 72, 664, 7440, 97712, 1468768, 24825184, 465516672, 9582002688, 214642099584, 5195322070656, 135064965744384, 3752151488840448, 110892824334154752, 3473236656134243328, 114893633354895538176, 4002000861023966189568, 146388324613230926979072
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A088501(k) * binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} 2^k * A000262(k) * Stirling1(n,k).
a(n) ~ exp(-7/8 + 1/(4*(exp(1/2) - 1)) + sqrt((2*n)/(exp(1/2) - 1))*exp(1/4) - n) * n^(n - 1/4) / (2^(3/4) * (exp(1/2) - 1)^(n + 1/4)). - Vaclav Kotesovec, May 23 2022
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1+x)^(2/(1-2Log[1+x])), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Oct 13 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1+x)^(2/(1-2*log(1+x)))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 2^k*k!*stirling(j, k, 1))*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 23 2022
STATUS
approved