OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A088501(k) * binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} 2^k * A000262(k) * Stirling1(n,k).
a(n) ~ exp(-7/8 + 1/(4*(exp(1/2) - 1)) + sqrt((2*n)/(exp(1/2) - 1))*exp(1/4) - n) * n^(n - 1/4) / (2^(3/4) * (exp(1/2) - 1)^(n + 1/4)). - Vaclav Kotesovec, May 23 2022
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1+x)^(2/(1-2Log[1+x])), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Oct 13 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1+x)^(2/(1-2*log(1+x)))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 2^k*k!*stirling(j, k, 1))*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 23 2022
STATUS
approved