login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088819
Expansion of e.g.f. (1+x)^(1/(1-log(1+x))).
6
1, 1, 2, 6, 22, 100, 518, 3122, 20676, 154524, 1238952, 11030448, 103376832, 1068000024, 11407673496, 134352996744, 1603035004368, 21276244952784, 278535036773856, 4141886572833888, 58405909554175776, 973789956270781056, 14462380128843907680
OFFSET
0,3
COMMENTS
a(34) is the first negative term.
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n, k)*A000262(k). - Vladeta Jovovic, Nov 26 2003
a(0) = 1; a(n) = Sum_{k=1..n} A006252(k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, May 23 2022
MATHEMATICA
CoefficientList[Series[(1+x)^(1/(1-Log[1+x])), {x, 0, 100}], x]* Range[0, 100]! (* Georg Fischer, Feb 17 2019 *)
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, k!*stirling(j, k, 1))*binomial(i-1, j-1)*v[i-j+1])); v; \\ Seiichi Manyama, May 23 2022
CROSSREFS
Row sums of A079639.
Sequence in context: A012271 A012266 A009468 * A177478 A376694 A052517
KEYWORD
sign
AUTHOR
Vladeta Jovovic, Nov 22 2003
STATUS
approved