OFFSET
1,2
REFERENCES
M. Kalecki, On certain sums extended over primes or prime factors, Prace Mat, Vol. 8 (1963), pp. 121-127.
J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number Theory I, Volume 1, Springer, 2005, Chapter IV, p. 121.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Project Euler, Problem 521 - Smallest prime factor
FORMULA
a(n) ~ n^2/(2 log n) [Kalecki]. - Thomas Ordowski, Nov 29 2018
a(n) = Sum_{prime p} n(p)*p, where n(p) is the number of integers in [1,n] with smallest prime factor spf(.) = A020639(.) = p, decreasing from n(2) = floor(n/2) to n(p) = 1 for p >= sqrt(n), possibly earlier, and n(p) = 0 for p > n. One has n(p) ~ D(p)*n where D(p) = (Product_{primes q < p} 1-1/q)/p = A038110/A038111 is the density of numbers having p as smallest prime factor. - M. F. Hasler, Dec 05 2018
MATHEMATICA
Prepend[Accumulate[Rest[Table[FactorInteger[i][[1, 1]], {i, 60}]]], 0] (* Harvey P. Dale, Jan 09 2011 *)
PROG
(PARI) a(n) = sum(k=2, n, factor(k)[1, 1]); \\ Michel Marcus, May 15 2017
(GAP) P:=List(List([2..60], n->Factors(n)), i->i[1]);;
a:=Concatenation([0], List([1..Length(P)], i->Sum([1..i], k->P[k]))); # Muniru A Asiru, Nov 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 22 2003
STATUS
approved