login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057897
Numbers which can be written as m^k-k, with m, k > 1.
9
2, 5, 7, 12, 14, 23, 24, 27, 34, 47, 58, 61, 62, 77, 79, 98, 119, 121, 122, 142, 167, 194, 213, 223, 238, 248, 252, 254, 287, 322, 340, 359, 398, 439, 482, 503, 509, 527, 574, 621, 623, 674, 723, 726, 727, 782, 839, 898, 959, 997, 1014, 1019, 1022, 1087, 1154
OFFSET
1,1
COMMENTS
It may be that positive integers can be written as m^k-k (with m and k > 1) in at most one way [checked up to 10000].
All numbers < 10^16 of this form have a unique representation. The uniqueness question leads to a Pillai-like exponential Diophantine equation a^x-b^y = x-y for x > y > 1 and b > a > 1, which appears to have no solutions. - T. D. Noe, Oct 06 2004
LINKS
MATHEMATICA
nLim=1000; lst={}; Do[k=2; While[n=m^k-k; n<=nLim, AppendTo[lst, n]; k++ ], {m, 2, Sqrt[nLim]}]; Union[lst] (* T. D. Noe, Oct 06 2004 *)
PROG
(PARI) ok(n)={my(e=2); while(2^e <= n+e, if(ispower(n+e, e), return(1)); e++); 0} \\ Andrew Howroyd, Oct 20 2020
(PARI) upto(lim)={my(p=logint(lim, 2)); while(logint(lim+p+1, 2)>p, p++); Vec(Set(concat(vector(p-1, e, e++; vector(sqrtnint(lim+e, e)-1, m, (m+1)^e-e)))))} \\ Andrew Howroyd, Oct 20 2020
CROSSREFS
Cf. A099225 (numbers of the form m^k+k, with m and k > 1), A074981 (n such that there is no solution to Pillai's equation), A099226 (numbers that can be represented as both a^x+x and b^y-y, for some a, b, x, y > 1).
Sequence in context: A159699 A063217 A088821 * A294146 A022758 A349744
KEYWORD
nonn
AUTHOR
Henry Bottomley, Sep 26 2000
STATUS
approved