login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088822
a(n) is the sum of largest prime factors of numbers from 1 to n.
6
0, 2, 5, 7, 12, 15, 22, 24, 27, 32, 43, 46, 59, 66, 71, 73, 90, 93, 112, 117, 124, 135, 158, 161, 166, 179, 182, 189, 218, 223, 254, 256, 267, 284, 291, 294, 331, 350, 363, 368, 409, 416, 459, 470, 475, 498, 545, 548, 555, 560, 577, 590, 643, 646, 657, 664, 683
OFFSET
1,2
LINKS
FORMULA
a(n) = Pi^2/12 * n^2/log n + O(n^2/log^2 n). - Charles R Greathouse IV, Feb 19 2014
a(n) ~ zeta(2) * A088821(n), where zeta(2) = Pi^2/6. - Thomas Ordowski, Nov 29 2018
MATHEMATICA
-1 + Accumulate@ Array[FactorInteger[#][[-1, 1]] &, 57] (* Michael De Vlieger, Jul 23 2017 *)
PROG
(PARI) gpf(n)=if(n<4, n, n=factor(n)[, 1]; n[#n])
a(n)=sum(k=2, n, gpf(k)) \\ Charles R Greathouse IV, Feb 19 2014
(GAP) P:=List(List([2..60], n->Reversed(Factors(n))), i->i[1]);;
a:=Concatenation([0], List([1..Length(P)], i->Sum([1..i], k->P[k]))); # Muniru A Asiru, Nov 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 22 2003
STATUS
approved