login
A177478
Permutations avoiding the consecutive patterns 4312 and 4213.
9
1, 1, 2, 6, 22, 100, 540, 3388, 24248, 195048, 1742860, 17127880, 183617280, 2132433940, 26669752928, 357375269160, 5108084756320, 77574769941760, 1247401873186560, 21172559509803520, 378282904982091200, 7096584257305845120, 139471475802695196160
OFFSET
0,3
COMMENTS
a(n) gives the number of permutations of [n] which avoid both the pattern 4312 and 4213 consecutively. Also the number avoiding the pairs {2134, 3124}, {1243, 1342}, or {3421, 2431} (by symmetry).
This can also be considered avoiding a partially ordered pattern: Suppose p<s, r<s, o<p and o<r. To avoid spor means not to have four consecutive letters such that the first letter is larger than the second and the last one, the third letter is less than the second and the last one.
The Baxter-Nakamura-Zeilberger paper has an associated Maple package. See Links.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..120 (terms n = 1..40 from Ray Chandler)
S. Kitaev, Introduction to partially ordered patterns, Discrete Applied Mathematics 155 (2007), 929-944.
FORMULA
a(n) ~ c * d^n * n!, where d = 0.89333294588184091624317413051..., c = 1.4839698712287023868073431417... . - Vaclav Kotesovec, Aug 24 2014
MAPLE
b:= proc(u, o, s, t) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, t, j), j=1..u)+
add(b(u+j-1, o-j, 0, 0), j=`if`(s>0, s+t-1, 1)..o))
end:
a:= n-> b(0, n, 0, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 25 2013
MATHEMATICA
b[u_, o_, s_, t_] := b[u, o, s, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, t, j], {j, 1, u}] + Sum[b[u+j-1, o-j, 0, 0], {j, If[s > 0, s+t-1, 1], o}]];
a[n_] := b[0, n, 0, 0];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 03 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A012266 A009468 A088819 * A376694 A052517 A245119
KEYWORD
nonn
AUTHOR
Signy Olafsdottir (signy06(AT)ru.is), May 09 2010
EXTENSIONS
More terms, succinct title, additional comments, new references from Andrew Baxter, Jan 21 2011
STATUS
approved