login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245119
G.f. satisfies: A(x) = 1 + x^2 + x^2*A'(x)/A(x).
2
1, 0, 1, 2, 6, 22, 100, 554, 3654, 28014, 244572, 2392042, 25877610, 306553246, 3944541224, 54764396346, 815786104186, 12976263731454, 219490418886728, 3933636232278866, 74453982353188846, 1484056255756797222, 31071499784792496588, 681729867750992165514, 15641641334118250802462
OFFSET
0,4
REFERENCES
Compare g.f. to: G(x) = 1 + x + x^2*G'(x)/G(x) when G(x) = 1/(1-x).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp(-x)*G(x) where G(x) = exp(x)*(1 + x^2*G'(x)/G(x)) is the e.g.f. of A245308.
(2) A(x) = exp( Integral (A(x) - 1 - x^2)/x^2 dx ).
a(n) ~ BesselJ(1,2) * (n-1)!. - Vaclav Kotesovec, Jul 25 2014
EXAMPLE
G.f.: A(x) = 1 + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 100*x^6 + 554*x^7 + 3654*x^8 +...
where the logarithmic derivative equals (A(x) - 1 - x^2)/x^2:
A'(x)/A(x) = 2*x + 6*x^2 + 22*x^3 + 100*x^4 + 554*x^5 + 3654*x^6 +...+ a(n+2)*x^n +...
thus the logarithm begins:
log(A(x)) = 2*x^2/2 + 6*x^3/3 + 22*x^4/4 + 100*x^5/5 + 554*x^6/6 + 3654*x^7/7 +...+ a(n+1)*x^n/n +...
PROG
(PARI) {a(n)=local(A=1+x^2); for(i=1, n, A = 1 + x^2 + x^2*A'/(A +x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From A(x) = exp(-x)*G(x), where G(x) = e.g.f. of A245308: */
{a(n)=local(G=1+x); for(i=1, n, G = exp(x +x*O(x^n))*(1 + x^2*G'/(G +x*O(x^n))));
polcoeff(exp(-x +x*O(x^n))*G, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A245308.
Sequence in context: A177478 A376694 A052517 * A012270 A009585 A012267
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 24 2014
STATUS
approved