login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = 1 + x^2 + x^2*A'(x)/A(x).
2

%I #12 Jul 25 2014 03:07:49

%S 1,0,1,2,6,22,100,554,3654,28014,244572,2392042,25877610,306553246,

%T 3944541224,54764396346,815786104186,12976263731454,219490418886728,

%U 3933636232278866,74453982353188846,1484056255756797222,31071499784792496588,681729867750992165514,15641641334118250802462

%N G.f. satisfies: A(x) = 1 + x^2 + x^2*A'(x)/A(x).

%D Compare g.f. to: G(x) = 1 + x + x^2*G'(x)/G(x) when G(x) = 1/(1-x).

%H Paul D. Hanna, <a href="/A245119/b245119.txt">Table of n, a(n) for n = 0..300</a>

%F G.f. A(x) satisfies:

%F (1) A(x) = exp(-x)*G(x) where G(x) = exp(x)*(1 + x^2*G'(x)/G(x)) is the e.g.f. of A245308.

%F (2) A(x) = exp( Integral (A(x) - 1 - x^2)/x^2 dx ).

%F a(n) ~ BesselJ(1,2) * (n-1)!. - _Vaclav Kotesovec_, Jul 25 2014

%e G.f.: A(x) = 1 + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 100*x^6 + 554*x^7 + 3654*x^8 +...

%e where the logarithmic derivative equals (A(x) - 1 - x^2)/x^2:

%e A'(x)/A(x) = 2*x + 6*x^2 + 22*x^3 + 100*x^4 + 554*x^5 + 3654*x^6 +...+ a(n+2)*x^n +...

%e thus the logarithm begins:

%e log(A(x)) = 2*x^2/2 + 6*x^3/3 + 22*x^4/4 + 100*x^5/5 + 554*x^6/6 + 3654*x^7/7 +...+ a(n+1)*x^n/n +...

%o (PARI) {a(n)=local(A=1+x^2);for(i=1,n,A = 1 + x^2 + x^2*A'/(A +x*O(x^n)));polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) /* From A(x) = exp(-x)*G(x), where G(x) = e.g.f. of A245308: */

%o {a(n)=local(G=1+x);for(i=1,n,G = exp(x +x*O(x^n))*(1 + x^2*G'/(G +x*O(x^n))));

%o polcoeff(exp(-x +x*O(x^n))*G,n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A245308.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Jul 24 2014