login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245121
Number of n-node rooted identity trees with thinning limbs and root outdegree (branching factor) 2.
2
1, 1, 3, 4, 8, 12, 22, 36, 63, 107, 188, 327, 578, 1020, 1820, 3248, 5839, 10511, 19022, 34484, 62755, 114421, 209234, 383327, 703901, 1294822, 2386376, 4405083, 8144701, 15080416, 27961728, 51912054, 96496481, 179577543, 334558479, 623936240, 1164765120
OFFSET
4,3
COMMENTS
In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes.
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 1.938950593419038561279875... and c = 0.929315638487153276953929... . - Vaclav Kotesovec, Jul 13 2014
EXAMPLE
a(7) = 4:
: o o o o :
: / \ / \ / \ / \ :
: o o o o o o o o :
: | | | / \ ( ) | :
: o o o o o o o o :
: | | | | :
: o o o o :
: | | | :
: o o o :
: | :
: o :
MAPLE
b:= proc(n, i, h, v) option remember; `if`(n=0, `if`(v=0, 1, 0),
`if`(i<1 or v<1 or n<v, 0, add(binomial(A(i, min(i-1, h)), j)
*b(n-i*j, i-1, h, v-j), j=0..min(n/i, v))))
end:
A:= proc(n, k) option remember;
`if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k, n-1)))
end:
a:= n-> b(n-1$2, 2$2):
seq(a(n), n=4..45);
MATHEMATICA
b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, Sum[Binomial[A[i, Min[i - 1, h]], j] b[n - i*j, i - 1, h, v - j], {j, 0, Min[n/i, v]}]]];
A[n_, k_] := A[n, k] = If[n<2, n, Sum[b[n-1, n-1, j, j], {j, 1, Min[k, n-1] } ] ];
a[n_] := b[n-1, n-1, 2, 2];
a /@ Range[4, 45] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A245120.
Sequence in context: A173534 A074331 A052952 * A329730 A153339 A275989
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 12 2014
STATUS
approved