login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-node rooted identity trees with thinning limbs and root outdegree (branching factor) 2.
2

%I #17 Dec 28 2020 09:52:22

%S 1,1,3,4,8,12,22,36,63,107,188,327,578,1020,1820,3248,5839,10511,

%T 19022,34484,62755,114421,209234,383327,703901,1294822,2386376,

%U 4405083,8144701,15080416,27961728,51912054,96496481,179577543,334558479,623936240,1164765120

%N Number of n-node rooted identity trees with thinning limbs and root outdegree (branching factor) 2.

%C In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes.

%H Alois P. Heinz, <a href="/A245121/b245121.txt">Table of n, a(n) for n = 4..1000</a>

%F a(n) ~ c * d^n / n^(3/2), where d = 1.938950593419038561279875... and c = 0.929315638487153276953929... . - _Vaclav Kotesovec_, Jul 13 2014

%e a(7) = 4:

%e : o o o o :

%e : / \ / \ / \ / \ :

%e : o o o o o o o o :

%e : | | | / \ ( ) | :

%e : o o o o o o o o :

%e : | | | | :

%e : o o o o :

%e : | | | :

%e : o o o :

%e : | :

%e : o :

%p b:= proc(n, i, h, v) option remember; `if`(n=0, `if`(v=0, 1, 0),

%p `if`(i<1 or v<1 or n<v, 0, add(binomial(A(i, min(i-1, h)), j)

%p *b(n-i*j, i-1, h, v-j), j=0..min(n/i, v))))

%p end:

%p A:= proc(n, k) option remember;

%p `if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k, n-1)))

%p end:

%p a:= n-> b(n-1$2, 2$2):

%p seq(a(n), n=4..45);

%t b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, Sum[Binomial[A[i, Min[i - 1, h]], j] b[n - i*j, i - 1, h, v - j], {j, 0, Min[n/i, v]}]]];

%t A[n_, k_] := A[n, k] = If[n<2, n, Sum[b[n-1, n-1, j, j], {j, 1, Min[k, n-1] } ] ];

%t a[n_] := b[n-1, n-1, 2, 2];

%t a /@ Range[4, 45] (* _Jean-François Alcover_, Dec 28 2020, after _Alois P. Heinz_ *)

%Y Column k=2 of A245120.

%K nonn

%O 4,3

%A _Alois P. Heinz_, Jul 12 2014