Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 13 2022 14:29:33
%S 1,2,10,72,664,7440,97712,1468768,24825184,465516672,9582002688,
%T 214642099584,5195322070656,135064965744384,3752151488840448,
%U 110892824334154752,3473236656134243328,114893633354895538176,4002000861023966189568,146388324613230926979072
%N Expansion of e.g.f. (1 + x)^(2/(1 - 2 * log(1+x))).
%F a(0) = 1; a(n) = Sum_{k=1..n} A088501(k) * binomial(n-1,k-1) * a(n-k).
%F a(n) = Sum_{k=0..n} 2^k * A000262(k) * Stirling1(n,k).
%F a(n) ~ exp(-7/8 + 1/(4*(exp(1/2) - 1)) + sqrt((2*n)/(exp(1/2) - 1))*exp(1/4) - n) * n^(n - 1/4) / (2^(3/4) * (exp(1/2) - 1)^(n + 1/4)). - _Vaclav Kotesovec_, May 23 2022
%t With[{nn=20},CoefficientList[Series[(1+x)^(2/(1-2Log[1+x])),{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Oct 13 2022 *)
%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1+x)^(2/(1-2*log(1+x)))))
%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 2^k*k!*stirling(j, k, 1))*binomial(i-1, j-1)*v[i-j+1])); v;
%Y Cf. A088819, A354289.
%Y Cf. A000262, A088501, A354286, A354290.
%K nonn
%O 0,2
%A _Seiichi Manyama_, May 23 2022