login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177384
G.f. satisfies: A(x) = 1 + x/(A(x) + x*A'(x)).
3
1, 1, -2, 10, -72, 644, -6704, 78408, -1008480, 14065744, -210682080, 3365194560, -57019105920, 1020662366400, -19238635678208, 380825404556288, -7898501807543808, 171304216873595136, -3878189367387230720
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: d/dx x*A(x) = -x + (1/x)*d/dx { [x*A(x)]^2/2 }.
Let F(x) be the g.f. of A177383, then
. a(n) = [x^n] F(x)^(n+1)/(n+1);
. A(x) = F(x*A(x)) so that A(x) = (1/x)*Series_Reversion(x/F(x))
where F(x) satisfies: [x^n] F(x)^(n+1) = [x^n] F(x)^(n+2).
a(n) ~ (-1)^(n+1) * c * n! * n^4, where c = 0.005428317993266202636748034138.... - Vaclav Kotesovec, Feb 22 2014
Recurrence: a(0) = a(1) = 1, a(n) = -Sum_{0<k<n} (k+1)*a(k)*a(n-k). - Vladimir Reshetnikov, Nov 14 2016
A177383(n) / a(n) ~ exp(1). - Vaclav Kotesovec, Mar 06 2020
EXAMPLE
G.f.: A(x) = 1 + x - 2*x^2 + 10*x^3 - 72*x^4 + 644*x^5 - 6704*x^6 +...
d/dx x*A(x) = 1 + 2*x - 6*x^2 + 40*x^3 - 360*x^4 + 3864*x^5 -...
d/dx [x*A(x)]^2/2 = x + 3*x^2 - 6*x^3 + 40*x^4 - 360*x^5 + 3864*x^6 -...
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = -Sum[(k+1) a[k] a[n-k], {k, 1, n-1}]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 14 2016 *)
PROG
(PARI) {a(n)=local(G=1+x); for(i=1, n, G=1+x/(G+x*deriv(G)+x*O(x^n))); polcoeff(G, n)}
CROSSREFS
Cf. A177383.
Sequence in context: A366241 A321446 A111554 * A354288 A182525 A321389
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 15 2010
STATUS
approved