login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177381
G.f.: Sum_{n>=0} Product_{k=1..n} tan(k*arctan(x)).
3
1, 1, 2, 6, 26, 142, 930, 7110, 62138, 610958, 6674370, 80201222, 1051277530, 14927729678, 228262465634, 3739557703366, 65345926588026, 1213197344607502, 23848186328994178, 494822251631023622, 10807111342480752538
OFFSET
0,3
LINKS
FORMULA
G.f.: A(x) = G(arctan(x)) where G(x) = e.g.f. of A177382.
G.f.: Sum_{n>=0} (-I)^n*Product_{k=1..n} ((1+i*x)^k - (1-i*x)^k)/((1+i*x)^k + (1-i*x)^k), where i = sqrt(-1).
a(n) ~ n! / (sqrt(2) * G^(n+1)), where G = A006752 = 0.915965594177219... is Catalan's constant. - Vaclav Kotesovec, Nov 06 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 26*x^4 + 142*x^5 + 930*x^6 +...
A(x) = 1 + x + x*tan(2*arctan(x)) + x*tan(2*arctan(x))*tan(3*arctan(x)) +...
where the series tan(k*arctan(x)) for k=2..6 begin:
tan(2*arctan(x)) = 2*x + 2*x^3 + 2*x^5 + 2*x^7 + 2*x^9 + ...
tan(3*arctan(x)) = 3*x + 8*x^3 + 24*x^5 + 72*x^7 + 216*x^9 + ...
tan(4*arctan(x)) = 4*x + 20*x^3 + 116*x^5 + 676*x^7 + 3940*x^9 + ...
tan(5*arctan(x)) = 5*x + 40*x^3 + 376*x^5 + 3560*x^7 + 33720*x^9 + ...
tan(6*arctan(x)) = 6*x + 70*x^3 + 966*x^5 + 13446*x^7 + 187270*x^9 + ...
...
tan(k*arctan(x)) = -i*((1+i*x)^k - (1-i*x)^k) / ((1+i*x)^k + (1-i*x)^k).
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Gf); Gf=sum(m=0, n, prod(k=1, m, tan(k*atan(X)))); polcoeff(Gf, n)}
(PARI) {a(n)=polcoeff(sum(m=0, n, (-I)^m*prod(k=1, m, ((1+I*x)^k-(1-I*x)^k)/((1+I*x)^k+(1-I*x)^k +x*O(x^n)))), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 12 2010
STATUS
approved