login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354285
Numbers k such that one of k, k+1, k+2 is prime and the other two are semiprimes, and one of R(n), R(n+1), R(n+2) is prime and the other two are semiprimes, where R = A004086.
1
4, 157, 177, 1381, 1437, 7417, 9661, 9901, 12757, 15297, 15681, 16921, 35961, 36901, 39777, 75741, 77277, 93097, 94441, 103317, 108201, 111261, 117541, 121377, 127597, 128461, 128901, 130197, 134677, 146841, 147417, 151377, 156601, 160077, 165441, 166861, 169177, 178537, 185901, 187881, 306541
OFFSET
1,1
COMMENTS
All terms after the first == 1 (mod 4).
LINKS
EXAMPLE
a(3) = 177 is a term because 177 = 3*59 and 178 = 2*89 are semiprimes, 179 is prime, 771 = 3*257 and 871 = 13*67 are semiprimes and 971 is prime.
MAPLE
revdigs:= proc(n) local i, L;
L:= convert(n, base, 10);
add(10^(i-1)*L[-i], i=1..nops(L))
end proc:
f:= proc(n) uses numtheory;
if not isprime((n+1)/2) then return false fi;
if n mod 3 = 0 then if not(isprime(n/3) and isprime(n+2)) then return false fi
elif n mod 3 = 2 then return false
elif not(isprime(n) and isprime((n+2)/3)) then return false
fi;
sort(map(bigomega@revdigs, [n, n+1, n+2]))=[1, 2, 2]
end proc:
f(4):= true:
select(f, [4, seq(i, i=5..10^6, 4)]);
MATHEMATICA
Select[Range[300000], Sort[PrimeOmega[# + {0, 1, 2}]] == Sort[PrimeOmega[IntegerReverse[# + {0, 1, 2}]]] == {1, 2, 2} &] (* Amiram Eldar, May 29 2022 *)
CROSSREFS
Cf. A004086.
Sequence in context: A093977 A202298 A003736 * A210837 A289231 A204680
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, May 29 2022
STATUS
approved