login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212425
G.f. satisfies: A(x) = ( x + A(A(x)) )^3 where g.f. A(x) = Sum_{n>=1} a(n)*x^(8*n-5).
2
1, 3, 30, 406, 6336, 107415, 1922310, 35739990, 683593902, 13364444808, 265869803598, 5364752267064, 109533577804350, 2258715717810522, 46974966620274810, 984153696477302700, 20751365954898103338, 440033530633057730880, 9377869165352931696930
OFFSET
1,2
COMMENTS
Conjecture: (2*n-1) divides a(n); see A212426.
More generally, we have the conjecture:
If A(x) = ( x + A(A(x)) )^b
where A(x) = Sum_{n>=1} a(n) * x^((b^2-1)*(n-1)+b)
then ((b-1)*(n-1)+1) divides a(n).
LINKS
FORMULA
G.f.: A(x) = d/dx G(x^8)/(4*x^4) where G(x) = Sum_{n>=1} A212426(n)*x^n is the g.f. of A212426.
a(n) = (2*n-1)*A212426(n).
a(n) = T(8*n-5,1), T(n,k) = if n<3*k then 0 else if n/3=k then 1 else sum(j=0..3*k-1, C(3*k,j)*sum(i=3*k-j+1..n-j-1, T(i,3*k-j)*T(n-j,i))). [Vladimir Kruchinin, May 17 2012]
EXAMPLE
G.f.: A(x) = x^3 + 3*x^11 + 30*x^19 + 406*x^27 + 6336*x^35 + 107415*x^43 +...
such that A(x) = (x + A(A(x)))^3, where
A(A(x)) = x^9 + 9*x^17 + 117*x^25 + 1788*x^33 + 29925*x^41 + 530910*x^49 + 9809193*x^57 + 186734493*x^65 + 3637247445*x^73 +...
Note that A(A(x))^(1/3) = A(x) + A(A(A(x))), where
A(A(x))^(1/3) = x^3 + 3*x^11 + 30*x^19 + 407*x^27 + 6363*x^35 + 108009*x^43 + 1934721*x^51 + 35995815*x^59 + 688861845*x^67 +...
A(A(A(x))) = x^27 + 27*x^35 + 594*x^43 + 12411*x^51 + 255825*x^59 + 5267943*x^67 + 108864873*x^75 + 2261456685*x^83 +...
MAPLE
A:= proc(n) option remember;
`if`(n=1, unapply(x, x), unapply (convert (series
((x+(A(n-1)@@2)(x))^3, x, n+10), polynom), x))
end:
a:= n-> coeff (A(8*n-5)(x), x, 8*n-5):
seq (a(n), n=1..30); # Alois P. Heinz, May 17 2012
MATHEMATICA
T[n_, k_] := T[n, k] = If[n<3*k, 0, If[n/3 == k, 1, Sum[Binomial[3*k, j]*Sum[T[i, 3*k-j]*T[n-j, i], {i, 3*k-j+1, n-j-1}], {j, 0, 3*k-1}]]]; Table[T[8*n-5, 1], {n, 1, 19 }] (* Jean-François Alcover, Feb 14 2014, after Vladimir Kruchinin *)
PROG
(PARI) {a(n)=local(A=x^3+3*x^11); for(i=1, n, A=(x+subst(A, x, A+O(x^(8*n))))^3); polcoeff(A, 8*n-5)}
for(n=1, 30, print1(a(n), ", "))
(Maxima) T(n, k):= if n<3*k then 0 else if n/3=k then 1 else sum(binomial(3*k, j)*sum(T(i, 3*k-j)*T(n-j, i), i, 3*k-j+1, n-j-1), j, 0, 3*k-1);
makelist(T(n, 1), n, 1, 20); /* Vladimir Kruchinin, May 17 2012 */
CROSSREFS
Sequence in context: A354659 A058831 A234506 * A336538 A294240 A007004
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 16 2012
STATUS
approved