OFFSET
1,1
COMMENTS
Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". However n = 5777 is the first Frobenius pseudoprime with respect to x^2 - x - 1 that has Jacobi symbol (5/n) = -1, i.e., n == 2,3 (mod 5). Unrestricted version with the first term 4181 is given in A212424.
Composite k == 2,3 (mod 5) such that Fibonacci(k) == -1 (mod k) and that k divides Fibonacci(k+1). - Jianing Song, Sep 12 2018
REFERENCES
R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..14070 (terms below 10^13 from Dana Jacobsen's site)
Jon Grantham, Frobenius Pseudoprimes, Mathematics of Computation, 7 (2000), 873-891.
Dana Jacobsen, Pseudoprime Statistics, Tables, and Data.
Eric Weisstein's World of Mathematics, Frobenius Pseudoprime.
PROG
(PARI) { isFP23(n) = if(ispseudoprime(n), return(0)); t=Mod(x*Mod(1, n), (x^2-x-1)*Mod(1, n))^n; (kronecker(5, n)==-1 && t==1-x) }
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, May 16 2012
STATUS
approved