OFFSET
1,1
COMMENTS
Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". Crandall and Pomerance state that the first such Frobenius pseudoprime is actually 4181.
The Frobenius (1,-1) pseudoprimes are a subset of the odd Fibonacci pseudoprimes A081264. Among other ways, this can be seen by Theorem 3.6.6 of Crandall and Pomerance (2005) where the Frobenius criterion with respect to x^2 - Px + Q is an additional condition on an input which has passed the Lucas test for the same polynomial. - Dana Jacobsen, Aug 05 2015
Many other quadratics have a sparser set of pseudoprimes. For example, while there are 98702 pseudoprimes below 10^13 with respect to the Fibonacci polynomial, there are only 3897 for x^2 - 3x - 5. - Dana Jacobsen, Aug 05 2015
This is the intersection of A049062 and (A081264 union A141137), that is, composite k coprime to 5 such that Fibonacci(k) == (k/5) (mod k) and that k divides Fibonacci(k-(k/5)), where (k/5) is the Legendre or Jacobi symbol. - Jianing Song, Sep 12 2018
REFERENCES
R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (from Dana Jacobsen's site, terms 1..653 from Max Alekseyev)
Dorin Andrica and Ovidiu Bagdasar, Recurrent Sequences: Key Results, Applications, and Problems, Springer (2020), p. 89.
Jon Grantham, Frobenius pseudoprimes, Mathematics of Computation 70 (234): 873-891, 2001. doi: 10.1090/S0025-5718-00-01197-2.
Dana Jacobsen, Pseudoprime Statistics, Tables, and Data (includes terms through 10^13)
A. Rotkiewicz, Lucas and Frobenius Pseudoprimes, Annales Mathematicae Silesiane, 17 (2003): 17-39.
Lawrence Somer, Lucas sequences {Uk} for which U2p and Up are pseudoprimes for almost all primes p, Fibonacci Quart. 44 (2006), no. 1, 7-12.
Eric W. Weisstein, Frobenius Pseudoprime, MathWorld.
PROG
(PARI) { isFP(n) = if(ispseudoprime(n), return(0)); t=Mod(x*Mod(1, n), (x^2-x-1)*Mod(1, n))^n; (kronecker(5, n)==-1 && t==1-x)||(kronecker(5, n)==1 && t==x) }
(Perl) use ntheory ":all"; foroddcomposites { say if is_frobenius_pseudoprime($_, 1, -1) } 1e10; # Dana Jacobsen, Aug 05 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, May 16 2012
STATUS
approved