login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319168
Frobenius pseudoprimes == 1,4 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.
1
4181, 6721, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 90061, 96049, 97921, 118441, 146611, 163081, 186961, 197209, 219781, 252601, 254321, 257761, 268801, 272611, 283361, 302101, 303101, 330929, 399001, 433621, 438751, 489601, 512461, 520801
OFFSET
1,1
COMMENTS
Complement of A212423 with respect to A212424.
Intersection of A212424 and A047209.
Composite k == 1,4 (mod 5) such that Fibonacci(k) == 1 (mod k) and that k divides Fibonacci(k-1).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (from Dana Jacobsen's site)
Jon Grantham, Frobenius pseudoprimes, Mathematics of Computation 70 (234): 873-891, 2001. doi: 10.1090/S0025-5718-00-01197-2.
A. Rotkiewicz, Lucas and Frobenius Pseudoprimes, Annales Mathematicae Silesiane, 17 (2003): 17-39.
Eric Weisstein's World of Mathematics, Frobenius Pseudoprime.
EXAMPLE
4181 = 37*113 is composite, while Fibonacci(4180) == 0 (mod 4181), Fibonacci(4181) == 1 (mod 4181), so 4181 is a term.
PROG
(PARI) for(n=2, 500000, if(!isprime(n) && (n%5==1||n%5==4) && fibonacci(n-kronecker(5, n))%n==0 && (fibonacci(n)-kronecker(5, n))%n==0, print1(n, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 12 2018
STATUS
approved