Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 26 2024 15:49:26
%S 4181,6721,13201,15251,34561,51841,64079,64681,67861,68251,90061,
%T 96049,97921,118441,146611,163081,186961,197209,219781,252601,254321,
%U 257761,268801,272611,283361,302101,303101,330929,399001,433621,438751,489601,512461,520801
%N Frobenius pseudoprimes == 1,4 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.
%C Complement of A212423 with respect to A212424.
%C Intersection of A212424 and A047209.
%C Composite k == 1,4 (mod 5) such that Fibonacci(k) == 1 (mod k) and that k divides Fibonacci(k-1).
%H Amiram Eldar, <a href="/A319168/b319168.txt">Table of n, a(n) for n = 1..10000</a> (from Dana Jacobsen's site)
%H Jon Grantham, <a href="http://dx.doi.org/10.1090/S0025-5718-00-01197-2">Frobenius pseudoprimes</a>, Mathematics of Computation 70 (234): 873-891, 2001. doi: 10.1090/S0025-5718-00-01197-2.
%H Dana Jacobsen, <a href="http://ntheory.org/pseudoprimes.html">Pseudoprime Statistics, Tables, and Data</a>.
%H A. Rotkiewicz, <a href="http://www.sbc.org.pl/Content/33711/2003_03.pdf">Lucas and Frobenius Pseudoprimes</a>, Annales Mathematicae Silesiane, 17 (2003): 17-39.
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FrobeniusPseudoprime.html">Frobenius Pseudoprime</a>.
%e 4181 = 37*113 is composite, while Fibonacci(4180) == 0 (mod 4181), Fibonacci(4181) == 1 (mod 4181), so 4181 is a term.
%o (PARI) for(n=2,500000,if(!isprime(n) && (n%5==1||n%5==4) && fibonacci(n-kronecker(5,n))%n==0 && (fibonacci(n)-kronecker(5,n))%n==0, print1(n, ", ")))
%Y Cf. A047209, A093372, A094394, A094401, A212423, A212424.
%K nonn
%O 1,1
%A _Jianing Song_, Sep 12 2018