login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319170
Triangular numbers of the form 2..21..1; n_times 2 followed with n_times 1; n >= 1.
3
21, 2211, 222111, 22221111, 2222211111, 222222111111, 22222221111111, 2222222211111111, 222222222111111111, 22222222221111111111, 2222222222211111111111, 222222222222111111111111, 22222222222221111111111111, 2222222222222211111111111111, 222222222222222111111111111111, 22222222222222221111111111111111
OFFSET
1,1
COMMENTS
Triangular numbers of the form (5^(2x)*2^(2x+1)-10^x-1)/9. - Harvey P. Dale, Sep 16 2019
LINKS
Jiri Sedlacek, Trojuhelnikova cisla, In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 60-71.
FORMULA
For n >= 1, a(n) = 2..21..1; n_times 2 followed with n_times 1.
a(n) = A000217(n_times 6), that is a(n) = A000217(A002280(n)).
a(n) = 1/9 * (2*10^n + 1) * (10^n - 1), that is a(n) = 1/9 * A199682(n) * A002283(n).
From Colin Barker, Sep 13 2018: (Start)
G.f.: 3*x*(7 - 40*x) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>3
(End)
EXAMPLE
a(1) = A000217(6) = 21; a(2) = A000217(66) = 2211; a(3) = A000217(666) = 222111.
MATHEMATICA
Select[Table[FromDigits[Join[PadRight[{}, n, 2], PadRight[{}, n, 1]]], {n, 20}], OddQ[ Sqrt[8#+1]]&] (& or *) Select[Table[(5^(2x) 2^(2x+1)-10^x-1)/9, {x, 20}], OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Sep 16 2019 *)
PROG
(PARI) Vec(3*x*(7 - 40*x) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^20)) \\ Colin Barker, Sep 13 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ctibor O. Zizka, Sep 12 2018
STATUS
approved