login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250062
Number of length 3+6 0..n arrays with no seven consecutive terms having the maximum of any two terms equal to the minimum of the remaining five terms.
1
21, 2292, 50028, 505154, 3213429, 15002490, 56118016, 177725772, 494492733, 1240508808, 2859421884, 6142632990, 12432735341, 23913080862, 44008420512, 77925990328, 133371203589, 221477260860, 357993503916, 564783216666
OFFSET
1,1
COMMENTS
Row 3 of A250059.
LINKS
FORMULA
Empirical: a(n) = n^9 + (37/21)*n^8 + (39/7)*n^7 + (17/2)*n^6 + (13/15)*n^5 + (17/12)*n^4 + (10/3)*n^3 - (33/28)*n^2 - (19/70)*n.
Conjectures from Colin Barker, Aug 22 2017: (Start)
G.f.: x*(21 + 2082*x + 28053*x^2 + 105494*x^3 + 142519*x^4 + 72798*x^5 + 11647*x^6 + 266*x^7) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
EXAMPLE
Some solutions for n=3:
..1....2....0....2....3....2....3....0....2....2....3....1....1....1....2....0
..3....3....0....2....2....3....3....3....3....2....0....2....2....3....2....3
..2....0....2....3....2....3....0....0....2....3....3....0....3....0....1....3
..3....2....2....0....1....1....3....2....0....3....0....1....0....1....2....3
..0....2....2....1....0....2....3....2....0....2....2....1....0....0....0....0
..2....0....2....3....3....2....3....1....3....1....1....0....1....1....3....1
..0....1....1....0....0....0....1....3....2....1....2....3....3....2....0....1
..3....2....2....1....3....3....3....0....1....2....3....2....2....1....2....0
..1....3....0....2....3....3....3....3....2....3....0....2....2....1....1....3
CROSSREFS
Sequence in context: A319170 A359223 A215160 * A219000 A033510 A123844
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2014
STATUS
approved