login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250059
T(n,k)=Number of length n+6 0..k arrays with no seven consecutive terms having the maximum of any two terms equal to the minimum of the remaining five terms
14
21, 735, 21, 7224, 1299, 21, 40320, 18966, 2292, 21, 160545, 142170, 50028, 4030, 21, 509691, 715155, 505154, 132054, 7054, 21, 1375080, 2753061, 3213429, 1800040, 348066, 12284, 21, 3281544, 8746524, 15002490, 14492075, 6415638, 915064, 21276
OFFSET
1,1
COMMENTS
Table starts
.21....735.....7224......40320.......160545........509691........1375080
.21...1299....18966.....142170.......715155.......2753061........8746524
.21...2292....50028.....505154......3213429......15002490.......56118016
.21...4030...132054....1800040.....14492075......82072086......361440380
.21...7054...348066....6415638.....65419155.....449532868.....2330996068
.21..12284...915064...22838540....295152625....2461761504....15032948568
.21..21276..2398187...81138873...1329866076...13468748489....96884873906
.21..36654..6264519..287576973...5981519744...73595233759...623803084898
.21..65647.16780283.1035133361..27178700296..404992490768..4037252105050
.21.117118.44934437.3726902703.123528843942.2229198191613.26134202969838
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [linear recurrence of order 98]
Empirical for row n:
n=1: a(n) = n^7 + (7/2)*n^6 + 7*n^5 + (35/4)*n^4 + (7/2)*n^3 - (7/4)*n^2 - n
n=2: [polynomial of degree 8]
n=3: [polynomial of degree 9]
n=4: [polynomial of degree 10]
n=5: [polynomial of degree 11]
n=6: [polynomial of degree 12]
n=7: [polynomial of degree 13]
EXAMPLE
Some solutions for n=3 k=4
..1....1....1....0....1....1....0....0....1....1....0....0....0....0....0....1
..0....0....0....0....0....1....0....4....3....0....2....4....2....4....1....1
..1....2....0....3....4....4....3....0....1....2....4....0....0....0....1....4
..2....3....3....4....3....2....4....3....4....3....4....4....3....2....2....3
..1....0....1....1....2....4....4....1....0....2....4....3....1....3....0....2
..4....1....2....3....3....2....3....3....2....2....1....2....2....4....1....3
..0....4....2....2....3....3....1....3....0....2....3....4....2....4....1....2
..4....4....2....3....0....0....4....2....2....0....4....3....4....4....0....0
..0....4....2....1....0....0....2....3....4....1....4....0....3....4....4....1
CROSSREFS
Sequence in context: A012479 A317824 A297504 * A250060 A078791 A201069
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 11 2014
STATUS
approved