login
A250060
Number of length 1+6 0..n arrays with no seven consecutive terms having the maximum of any two terms equal to the minimum of the remaining five terms.
1
21, 735, 7224, 40320, 160545, 509691, 1375080, 3281544, 7116165, 14290815, 26947536, 48211800, 82498689, 135877035, 216496560, 335083056, 505506645, 745428159, 1077028680, 1527827280, 2131592001, 2929349115, 3970495704
OFFSET
1,1
COMMENTS
Row 1 of A250059.
LINKS
FORMULA
Empirical: a(n) = n^7 + (7/2)*n^6 + 7*n^5 + (35/4)*n^4 + (7/2)*n^3 - (7/4)*n^2 - n.
Conjectures from Colin Barker, Aug 22 2017: (Start)
G.f.: 21*x*(1 + x)*(1 + 26*x + 66*x^2 + 26*x^3 + x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=5:
..4....2....1....2....0....2....4....2....1....2....1....1....2....2....1....1
..1....0....5....4....3....3....0....5....4....1....2....1....5....2....5....0
..2....4....5....3....4....3....3....0....3....5....2....3....4....2....4....0
..0....4....0....3....0....0....3....2....4....2....1....5....0....1....1....2
..2....1....0....0....5....1....3....2....2....0....4....4....1....1....2....2
..2....4....2....5....1....0....3....0....2....0....4....3....4....2....3....3
..3....0....2....0....1....4....1....1....1....5....4....5....0....3....5....5
CROSSREFS
Sequence in context: A317824 A297504 A250059 * A078791 A201069 A143002
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2014
STATUS
approved