login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250064
Number of length 4+6 0..n arrays with no seven consecutive terms having the maximum of any two terms equal to the minimum of the remaining five terms.
1
21, 4030, 132054, 1800040, 14492075, 82072086, 361440380, 1318262304, 4153110705, 11640299550, 29654571826, 69781269480, 153557285479, 319076606870, 630919231800, 1194629311616, 2177281160205, 3836033915454
OFFSET
1,1
COMMENTS
Row 4 of A250059.
LINKS
FORMULA
Empirical: a(n) = n^10 + n^9 + (40/7)*n^8 + 7*n^7 - (11/6)*n^6 + (20/3)*n^5 + (25/6)*n^4 - (25/6)*n^3 + (61/42)*n^2.
Conjectures from Colin Barker, Aug 22 2017: (Start)
G.f.: x*(21 + 3799*x + 88879*x^2 + 565631*x^3 + 1296585*x^4 + 1192749*x^5 + 430621*x^6 + 49661*x^7 + 854*x^8) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)
EXAMPLE
Some solutions for n=3:
..1....2....2....1....1....1....2....1....0....2....1....3....3....1....3....2
..3....2....2....1....0....3....1....3....2....2....2....0....1....3....1....2
..0....2....1....0....0....1....2....2....0....1....2....2....0....0....1....0
..3....1....0....1....2....0....0....0....1....3....3....3....0....1....0....2
..2....0....2....0....2....3....2....1....3....3....0....0....1....3....3....1
..3....0....0....3....2....2....0....3....3....0....3....1....3....0....0....0
..3....2....3....3....3....0....3....0....3....3....2....2....3....2....2....2
..1....3....1....3....1....3....2....2....2....2....0....2....2....2....2....3
..2....2....2....3....0....2....2....2....2....0....3....0....2....3....3....3
..0....3....3....0....3....1....3....2....1....2....1....2....2....2....1....2
CROSSREFS
Sequence in context: A153833 A221164 A264250 * A200998 A209473 A055416
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2014
STATUS
approved