login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200998
Triangular numbers, T(m), that are three-quarters of another triangular number: T(m) such that 4*T(m)=3*T(k) for some k.
2
0, 21, 4095, 794430, 154115346, 29897582715, 5799976931385, 1125165627105996, 218276331681631860, 42344483180609474865, 8214611460706556491971, 1593592278893891349967530, 309148687493954215337208870, 59973251781548223884068553271
OFFSET
0,2
COMMENTS
For n>1, a(n) = 194*a(n-1) - a (n-2) + 21. See A200993 for generalization.
FORMULA
G.f.: (21*x)/(1 - 195*x + 195*x^2 - x^3).
From Colin Barker, Mar 02 2016: (Start)
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3) for n>2.
a(n) = ((97+56*sqrt(3))^(-n)*(-1+(97+56*sqrt(3))^n)*(-7+4*sqrt(3)+(7+4*sqrt(3))*(97+56*sqrt(3))^n))/128.
(End)
EXAMPLE
4*0 = 3*0.
4*21 = 3*28.
4*4095 = 3*5640.
4*794430 = 3*1059240.
MATHEMATICA
LinearRecurrence[{195, -195, 1}, {0, 21, 4095}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
PROG
(PARI) concat(0, Vec(21/(1 - 195*x + 195*x^2 - x^3) + O(x^99))) \\ Charles R Greathouse IV, Dec 20 2011
(Magma) I:=[0, 21]; [n le 2 select I[n] else 194*Self(n-1) - Self(n-2) + 21: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
KEYWORD
nonn,easy
AUTHOR
Charlie Marion, Dec 20 2011
STATUS
approved